Question #59737, Physics / Electromagnetism

Carbon tetrachloride at 20 degrees Celsius has relative permittivity of 2.24 and density of 1.60 g / cm³. Its molecular weight is 156. Calculate the dipole moment of a single molecule of the substance when it is in an electric field of 10⁷ V / m.

CCI₄ T=20 0 C ϵ =2,24 ρ =1,6 g/cm³ = 1600 kg/m³ M=156·10⁻³ kg / mol E=10⁷ V/m

Solution

The induced electric moments of liquid molecules are the same for all molecules. The induced moment proportional to the field strength acting on the molecule $\mu=\alpha E$, where α - polarizability of the molecule. In accordance with the Clausius - Mossotti for nonpolar gases and liquids, we get the formula: $\frac{(\varepsilon-1)M}{(\varepsilon+2)\rho}=\frac{4}{3}\pi N_A\alpha, \text{ consequently the dipole moment of a single molecule of the substance }\mu=\frac{3(\varepsilon-1)M\cdot E}{4\pi(\varepsilon+2)\rho N_A}.$

$$\mu = \frac{3 \cdot 1,24 \cdot 156 \cdot 10^{-3} kg/mol \cdot 10^{7} V/m}{4 \cdot 3,14 \cdot 4,24 \cdot 1600 \ kg/m^{3} \cdot 6,022 \cdot 10^{23} \ mol^{-1}} = 11,3 \cdot 10^{-23} \ C/m.$$

Answer the questions: μ =11,3·10⁻²³ C/m.

https://www.AssignmentExpert.com