Answer on Question 59636, Physics, Other

Question:

Daring darlene sends her stunt car horizontally off a cliff at $79.6 \mathrm{~km} / \mathrm{hr}$. If she lands 68.6 m from the base of the cliff, how high was the cliff above the ground?

Solution:

We can find the height of the cliff from the equations of vertical and horizontal motion of the car (let's, also, take the downwards as the positive direction, for convenience):

$$
\begin{align*}
& v_{0 x} t=x, \tag{1}\\
& h=v_{0 y} t+\frac{1}{2} g t^{2}, \tag{2}
\end{align*}
$$

here, $v_{0 x}=v_{0} \cos \theta=v_{0} \cos 0^{\circ}=v_{0}$ is the projection of the initial velocity of the car on axis $x ; v_{0 y}=v_{0} \sin \theta=v_{0} \sin 0^{\circ}=0$ is the projection of the initial velocity of the car on axis y; t is the time of flight of the car; x is the horizontal distance from the base of the cliff to the place where the car lands; h is the height of the cliff we are searching for and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration due to gravity (it will be with sign plus because we take the downwards as the positive direction).

So, we can rearrange our equations (1) - (2):

$$
\begin{align*}
& v_{0} t=x, \tag{3}\\
& h=\frac{1}{2} g t^{2}, \tag{4}
\end{align*}
$$

Let's first find the time of flight of the car from the equation (3):

$$
t=\frac{x}{v_{0}} .
$$

As we know the time of flight of the car, we can substitute it into the second equation and find the height of the cliff:

$$
h=\frac{1}{2} g t^{2}=\frac{1}{2} g\left(\frac{x}{v_{0}}\right)^{2} .
$$

Let's convert the initial velocity of the car from $\mathrm{km} / \mathrm{hr}$ to m / s :

$$
v_{0}=\left(79.6 \frac{\mathrm{~km}}{\mathrm{hr}}\right) \cdot\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right) \cdot\left(\frac{1 \mathrm{hr}}{3600 \mathrm{~s}}\right)=22.11 \mathrm{~ms}^{-1} .
$$

Finally, we can calculate the height of the cliff:

$$
h=\frac{1}{2} g\left(\frac{x}{v_{0}}\right)^{2}=\frac{1}{2} \cdot 9.8 \mathrm{~ms}^{-2} \cdot\left(\frac{68.6 \mathrm{~m}}{22.11 \mathrm{~ms}^{-1}}\right)^{2}=47.2 \mathrm{~m} .
$$

Answer:

$h=47.2 \mathrm{~m}$.

