Answer on Question \#59559-Physics - Mechanics | Relativity

A space vehicle travelling at a velocity of $1000 \mathrm{~ms}-1$ separates by a controlled explosion into two sections of mass 850 kg and 250 kg . The two parts carry on in the same direction with the heavier rear section moving $120 \mathrm{~ms}-1$ slower than the lighter front section. Determine the final velocity of each section.

Solution

The velocity of lighter rear section is v_{L} and of heavier rear section is $v_{H}=v_{L}-\Delta v$.
According to the conservation of momentum principle:

$$
\left(m_{1}+m_{2}\right) V=m_{1}\left(v_{L}-\Delta v\right)+m_{2} v_{L}
$$

So,

$$
\begin{aligned}
v_{L}=\frac{\left(m_{1}+m_{2}\right) V+m_{1}(\Delta v)}{\left(m_{1}+m_{2}\right)} & =V+\frac{m_{1}}{\left(m_{1}+m_{2}\right)} \Delta v=1000+\frac{850}{(850+250)} 120=1015 \frac{\mathrm{~m}}{\mathrm{~s}} . \\
v_{H} & =v_{L}-\Delta v=1015-120=895 \frac{\mathrm{~m}}{\mathrm{~s}} .
\end{aligned}
$$

