Answer on Question \#59556 - Physics - Other

Question: a particle moves along a straight line and its displacement x at a time t is given by $x=$ $t^{3}-3 t^{2}+3 t+4$. The velocity when the acceleration is zero is?

Solution:

The displacement of the particle at a time t is given by:

$$
x(t)=t^{3}-3 t^{2}+3 t+4
$$

Thus, one can find the velocity of the particle as the first derivative of function $x(t)$:

$$
v(t)=\frac{d x(t)}{d t}=3 t^{2}-6 t+3
$$

Next, one can find the acceleration of the particle as the second derivative of $x(t)$:

$$
a(t)=\frac{d^{2} x(t)}{d t}=\frac{d v(t)}{d t}=6 t-6
$$

We see that the acceleration is zero, when:

$$
6 t-6=0 \rightarrow t=1
$$

Finally, we obtain the velocity at the time $t=1$:

$$
v(1)=3 \cdot 1^{2}-6 \cdot 1+3=0
$$

Answer:

Velocity at the time, when the acceleration of the particle is equal zero, is also equal to zero:

$$
v(1)=0
$$

