Answer on Question 59554, Physics, Mechanics | Relativity

Question:

A car travelling with a speed of $60 \mathrm{~km} / \mathrm{hr}$ brakes and comes to rest within a distance of 20 m . If the speed of the car were $120 \mathrm{~km} / \mathrm{hr}$, the stopping distance will be?

Solution:

Let's first find the deceleration of the car from the kinematic equation:

$$
v_{f}^{2}=v_{i}^{2}+2 a d,
$$

here, $v_{f}=0 \mathrm{~ms}^{-1}$ is the final speed of the car, v_{i} is the initial speed of the car, a is the deceleration of the car and d is the stopping distance.

Then, from this formula we can find the deceleration of the car:

$$
\begin{gathered}
-v_{i}^{2}=2 a d, \\
a=\frac{-v_{i}^{2}}{2 d} .
\end{gathered}
$$

Let's convert the initial speed of the car from km / h to m / s :

$$
v_{i}=\left(60 \frac{\mathrm{~km}}{\mathrm{hr}}\right) \cdot\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right) \cdot\left(\frac{1 \mathrm{hr}}{3600 \mathrm{~s}}\right)=16.66 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Then, we can calculate the deceleration of the car:

$$
a=\frac{-v_{i}^{2}}{2 d}=\frac{-\left(16.66 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2 \cdot 20 \mathrm{~m}}=-6.94 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} .
$$

As we know the deceleration of the car, we can find the new stopping distance of the car from the same kinematic equation:

$$
d_{\text {new }}=\frac{-v_{\text {inew }}^{2}}{2 a} .
$$

Let's again convert the new initial speed of the car from km / h to m / s :

$$
v_{\text {inew }}=\left(120 \frac{\mathrm{~km}}{\mathrm{hr}}\right) \cdot\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right) \cdot\left(\frac{1 \mathrm{hr}}{3600 \mathrm{~s}}\right)=33.33 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Then, we can calculate the new stopping distance of the car (if the speed of the car were $120 \mathrm{~km} / \mathrm{hr}$):

$$
d_{\text {new }}=\frac{-v_{\text {inew }}^{2}}{2 a}=\frac{-\left(33.33 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2 \cdot\left(-6.94 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)}=80 \mathrm{~m} .
$$

Answer:

$d_{\text {new }}=80 \mathrm{~m}$.

