

Answer on Question 59554, Physics, Mechanics | Relativity

Question:

A car travelling with a speed of 60 km/hr brakes and comes to rest within a distance of 20 m . If the speed of the car were 120 km/hr , the stopping distance will be?

Solution:

Let's first find the deceleration of the car from the kinematic equation:

$$v_f^2 = v_i^2 + 2ad,$$

here, $v_f = 0 \text{ m/s}$ is the final speed of the car, v_i is the initial speed of the car, a is the deceleration of the car and d is the stopping distance.

Then, from this formula we can find the deceleration of the car:

$$-v_i^2 = 2ad,$$

$$a = \frac{-v_i^2}{2d}.$$

Let's convert the initial speed of the car from km/h to m/s :

$$v_i = \left(60 \frac{\text{km}}{\text{hr}}\right) \cdot \left(\frac{1000 \text{ m}}{1 \text{ km}}\right) \cdot \left(\frac{1 \text{ hr}}{3600 \text{ s}}\right) = 16.66 \frac{\text{m}}{\text{s}}$$

Then, we can calculate the deceleration of the car:

$$a = \frac{-v_i^2}{2d} = \frac{-\left(16.66 \frac{\text{m}}{\text{s}}\right)^2}{2 \cdot 20 \text{ m}} = -6.94 \frac{\text{m}}{\text{s}^2}.$$

As we know the deceleration of the car, we can find the new stopping distance of the car from the same kinematic equation:

$$d_{\text{new}} = \frac{-v_{i\text{new}}^2}{2a}.$$

Let's again convert the new initial speed of the car from km/h to m/s :

$$v_{i\text{new}} = \left(120 \frac{\text{km}}{\text{hr}}\right) \cdot \left(\frac{1000 \text{ m}}{1 \text{ km}}\right) \cdot \left(\frac{1 \text{ hr}}{3600 \text{ s}}\right) = 33.33 \frac{\text{m}}{\text{s}}$$

Then, we can calculate the new stopping distance of the car (if the speed of the car were 120 km/hr):

$$d_{new} = \frac{-v_{inew}^2}{2a} = \frac{-\left(33.33 \frac{m}{s}\right)^2}{2 \cdot \left(-6.94 \frac{m}{s^2}\right)} = 80 \text{ m.}$$

Answer:

$$d_{new} = 80 \text{ m.}$$