Answer on Question \#59548, Physics / Mechanics | Relativity
a steel cable by which an elevator of mass 800 kg is suspended has a diameter of 2 cm . the unstretched length of the suspension cable is 10 m when the elevator is on the top floor of the building. the first floor is 50 m below the top floor. find the values of extension in the cable when the elevator is on the top and on the first floor.

Find: $\Delta l-? \varepsilon-$?
Given:
$\mathrm{l}=60 \mathrm{~m}$
$m=800 \mathrm{~kg}$
$\mathrm{d}=2 \times 10^{-2} \mathrm{~m}$
$\mathrm{E}=210 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
$g=9,8 \mathrm{~N} / \mathrm{kg}$

Solution:

Hooke's Law: $\sigma=\mathrm{E} \varepsilon(1)$,
where σ-mechanical stress,
E - Young's modulus,
$\varepsilon-$ relative elongation.
Mechanical stress: $\sigma=\frac{\mathrm{F}_{\text {elast }}}{\mathrm{S}}(2)$,
where Felast - elastic force,
S - sectional area of the steel cable.
Elastic force numerically equal the weight of elevator:
$\mathrm{F}_{\text {elast }}=\mathrm{mg}(3)$
Sectional area of the steel cable:
$S=\frac{\pi d^{2}}{4}(4)$
(3) and (4) in (2):
$\sigma=\frac{4 \mathrm{mg}}{\pi \mathrm{d}^{2}}(5)$
Relative elongation: $\varepsilon=\frac{\Delta \mathrm{l}}{\mathrm{I}_{0}}(6)$,
where ΔI - absolute elongation,
l_{0} - initial length of cable.
Absolute elongation:
$\Delta \mathrm{l}=\mathrm{l}-\mathrm{l}_{0}(7)$,
where I - the final length of cable
(7) in (6): $\varepsilon=\frac{1-\mathrm{l}_{0}}{\mathrm{I}_{0}}$ (8)
(8) in (1): $\sigma=\mathrm{E} \times \frac{1-\mathrm{l}_{0}}{\mathrm{l}_{0}}$ (9)

Of (5) and (9) $\Rightarrow \frac{4 \mathrm{mg}}{\pi \mathrm{d}^{2}}=\mathrm{E} \times \frac{\mathrm{l}-\mathrm{l}_{0}}{\mathrm{I}_{0}}(10)$
Of $(10) \Rightarrow 4 \mathrm{mgl}_{0}=\mathrm{ETd}^{2}\left(\mathrm{l}-\mathrm{l}_{0}\right)(11)$
Of $(11) \Rightarrow l_{0}\left(4 \mathrm{mg}+E \pi d^{2}\right)=E \pi d^{2} l(12)$
Of (12) $\Rightarrow l_{0}=\frac{E_{0}{ }^{2} 1}{\left(4 \mathrm{mg}+\mathrm{Emd}^{2}\right)}(13)$
Of (13) $\Rightarrow \mathrm{I}_{0}=59,9929 \mathrm{~m}$ (14)
(14) in (7): $\Delta l=0,0071 \mathrm{~m}(15)$
(14) and (15) in (6): $\varepsilon=0,02 \%$

Answer:
$\Delta=7,1 \mathrm{~mm}$
$\varepsilon=0,02 \%$

