Answer on Question 59468, Physics, Electric Circuits

Question:

A certain generator consists of a rectangular coil of 250 turns and an area of $50 \mathrm{~cm}^{2}$. The coil rotates at a speed of 100 revolutions per second in a horizontal magnetic field 0.3 T . Calculate the maximum induced emf in the coil and the induced emf when the plane of the coil is inclined at an angle of 35° to the horizontal:
A) $\varepsilon_{\text {max }}=235.6 \mathrm{~V}$ and $\mathcal{E}=193.0 \mathrm{~V}$
B) $\mathcal{E}_{\text {max }}=344.2 \mathrm{~V}$ and $\mathcal{E}=230.2 \mathrm{~V}$
C) $\varepsilon_{\text {max }}=144.3 \mathrm{~V}$ and $\varepsilon=96.5 \mathrm{~V}$
D) $\varepsilon_{\max }=56.4 \mathrm{~V}$ and $\mathcal{E}=26.7 \mathrm{~V}$

Solution:

a) Let's use the Faraday's law and find the emf generated between the ends of the coil:

$$
\varepsilon=-\frac{d \Phi_{B}}{d t}=-\frac{d(N B A \cos \theta)}{d t}
$$

here, \mathcal{E} is the emf generated between the ends of the coil, Φ_{B} is the magnetic flux through the coil, N is the number of turns of the coil, B is the magnetic field, A is the cross-sectional area of the coil, θ is the angle between the magnetic field and the normal to the plane of the coil.

Since $\theta=\omega t$, we get:

$$
\varepsilon=-\frac{d(N B A \cos \omega t)}{d t}=-N B A \frac{d(\cos \omega t)}{d t}=N B A \omega \sin \omega t .
$$

The maximum value of the emf induced in the coil when $\theta=\omega t=90^{\circ}$, so that the coil is in the plane of the magnetic field:

$$
\varepsilon_{\max }=N B A \omega,
$$

here, ω is the angular frequency with which the coil rotates in a magnetic field.
Let's convert rev/s to rad/s:

$$
\omega=\left(100 \frac{r e v}{s}\right) \cdot\left(2 \pi \frac{r a d}{1 r e v}\right)=628.32 \frac{r a d}{s}
$$

Finally, substituting ω into the formula for $\mathcal{E}_{\max }$, we can calculate the maximum value of the induced emf:

$$
\varepsilon_{\max }=N B A \omega=250 \text { turns } \cdot 0.3 \mathrm{~T} \cdot 5 \cdot 10^{-3} \mathrm{~m}^{2} \cdot 628.32 \frac{\mathrm{rad}}{\mathrm{~s}}=235.6 \mathrm{~V} .
$$

b) To find the induced emf when the plane of the coil is inclined at an angle of $\theta=35^{\circ}$ to the horizontal (to the lines of the magnetic field), we can use the formula:

$$
\mathcal{E}=N B A \omega \sin \omega t .
$$

Let's substitute the numbers:

$$
\begin{aligned}
& \mathcal{E}=N B A \omega \sin \omega t=250 \text { turns } \cdot 0.3 \mathrm{~T} \cdot 5 \cdot 10^{-3} \mathrm{~m}^{2} \cdot 628.32 \frac{\mathrm{rad}}{\mathrm{~s}} \cdot \sin 35^{\circ}= \\
& =135.13 \mathrm{~V} .
\end{aligned}
$$

Answer:

$$
\mathcal{E}_{\max }=235.6 \mathrm{~V}, \mathcal{E}=135.13 \mathrm{~V} .
$$

