a 1300 kg car moving north at $25 \mathrm{~m} / \mathrm{sec}$ collides with a 2100 kg car moving east at $17 \mathrm{~m} / \mathrm{sec}$ they stick together in what direction and with what speed do they move after the collision

Solution

Momentum of first car:

$$
p_{1}=m_{1} * v_{1}=1300 * 25=32500 \mathrm{~m} * \mathrm{~kg} / \mathrm{s}
$$

Momentum of second car:

$$
p_{1}=m_{2} * v_{2}=2100 * 17=35700 \mathrm{~m} * \mathrm{~kg} / \mathrm{s}
$$

So, according to the sketch above:

$$
p_{\text {res }}=\sqrt{p_{1}^{2}+p_{2}^{2}}=\sqrt{32500^{2}+35700^{2}} \approx 48277 \mathrm{~m} * \frac{\mathrm{~kg}}{\mathrm{~s}}
$$

Thus, speed of the collided cars is:

$$
\begin{gathered}
p_{\text {res }}=\left(m_{1}+m_{2}\right) v_{\text {res }} \\
v_{\text {res }}=\frac{p_{\text {res }}}{\left(m_{1}+m_{2}\right)}=\frac{48277}{(2100+1300)} \approx \mathbf{1 4 . 2 ~ \mathbf { m } / \mathrm { s }}
\end{gathered}
$$

Angle α can be calculated as:

$$
\alpha=\arctan \frac{p_{1}}{p_{2}}=\arctan \frac{32500}{35700} \approx 42.3^{\circ}
$$

Answer: After collision cars will moved with the speed $14.2 \mathrm{~m} / \mathrm{s} . \alpha=42.3^{\circ}$

