Answer on Question 59444, Physics, Electromagnetism

Question:

An electron with momentum $5.60 \cdot 10^{-19} \mathrm{kgms}^{-1}$ moves in a circle of radius 5 m in uniform magnetic field. What is the magnitude of the magnetic field?

Solution:

There are two forces that act on the electron when it moves in a circle in the uniform magnetic field: the magnetic force and the radial force (this one is required to keep the electron moving in a circle). So, using the Newton's second law of motion we can write:

$$
e v B=\frac{m v^{2}}{r},
$$

here, $e=-1.6 \cdot 10^{-19} C$ is the charge of the electron, v is the orbital speed of the electron, B is the magnetic field, m is the mass of the electron, r is the radius of the electron's circular orbit.

Let's simplify the last formula, we get:

$$
e r B=m v=p,
$$

here, $p=m v$ is the momentum of the electron and we already know it from the condition of the task.

Then, from this formula we can find the magnitude of the magnetic field, B :

$$
B=\left|\frac{p}{e r}\right|=\left|\frac{5.60 \cdot 10^{-19} \mathrm{kgms}^{-1}}{-1.6 \cdot 10^{-19} \mathrm{C} \cdot 5.0 \mathrm{~m}}\right|=0.7 \mathrm{~T} .
$$

The magnitude of the magnetic field is equal to $0.7 T$.

Answer:

$$
B=0.7 T .
$$

