Answer on Question \#59435-Physics-Mechanics-Relativity

Blocks A (mass 3.00 kg) and B (mass 14.00 kg , to the right of A) move on a frictionless, horizontal surface. Initially, block B is moving to the left at $0.500 \mathrm{~m} / \mathrm{s}$ and block A is moving to the right at $2.00 \mathrm{~m} / \mathrm{s}$. The blocks are equipped with ideal spring bumpers. The collision is head-on, so all motion before and after it is along a straight line. Let $+x$ be the direction of the initial motion of A. The questions

Part A Find the maximum energy stored in the spring bumpers. Uspringmax =
Part B Find the velocity of block A when the energy stored in the spring bumpers is maximum. . vA =
Part C Find the velocity of block B when the energy stored in the spring bumpers is maximum. $\mathrm{vB}=$
Part D Find the velocity of block A after the blocks have moved apart. vA =
Part E Find the velocity of block B after the blocks have moved apart. . vB = need units

Solution

This collision is elastic so momentum and energy are conserved.
A.

$$
\begin{gathered}
U_{\text {springmax }}=K E_{\text {total }}-K E_{C M} \\
K E_{\text {total }}=\frac{1}{2}\left(m_{A} v_{A i}^{2}+m_{B} v_{B i}^{2}\right)=\frac{1}{2}\left(3.00(2.00)^{2}+14.00(0.500)^{2}\right)=7.75 \mathrm{~J} . \\
v_{C M}=\frac{m_{A} v_{A i}+m_{B} v_{B i}}{m_{A}+m_{B}}=\frac{3.00(2.00)-14.00(0.500)}{3.00+14.00}=-0.0588 \frac{\mathrm{~m}}{\mathrm{~s}} \\
K E_{C M}=\frac{1}{2}\left(m_{A}+m_{B}\right)\left(v_{C M}\right)^{2}=\frac{1}{2}(3.00+14.00)(-0.0588)^{2}=0.03 \mathrm{~J} . \\
U_{\text {springmax }}=7.75-0.03=7.72 \mathrm{~J} .
\end{gathered}
$$

B. When the energy stored in the spring bumpers is maximum A and B moves together with velocity of center of mass

$$
v_{A}=v_{C M}=-0.0588 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

C.

$$
v_{B}=v_{C M}=-0.0588 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

D. For an elastic, head-on collision, we know that the relative velocity of approach = relative velocity of separation, or

$$
2.00 \frac{\mathrm{~m}}{\mathrm{~s}}-\left(-0.500 \frac{\mathrm{~m}}{\mathrm{~s}}\right)=V_{B}-V_{A}
$$

where V_{B} is the post-collision velocity of B , and V_{A} is the post-collision velocity of mA .

$$
V_{B}=V_{A}+2.5
$$

Then by conservation of momentum,

$$
\begin{gathered}
\left(m_{A}+m_{B}\right) v_{C M}=m_{A} V_{A}+m_{B}\left(V_{A}+2.5\right) \\
V_{A}=\frac{\left(m_{A}+m_{B}\right) v_{C M}-m_{B}(2.5)}{m_{A}+m_{B}}=v_{C M}-\frac{m_{B}(2.5)}{m_{A}+m_{B}}=-0.0588-\frac{14.00(2.5)}{3.00+14.00}=-2.118 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

E.

$$
V_{B}=V_{A}+2.5=-2.118+2.5=0.382 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

