Answer on Question \#59423 - Physics - Electromagnetism

An electron has a velocity of 6.0 ? $106 \mathrm{~m} / \mathrm{s}$ in the positive x direction at a point where the magnetic field has the components $\mathrm{Bx}=3.0 \mathrm{~T}, \mathrm{By}=1.5 \mathrm{~T}$, and $\mathrm{Bz}=2.0 \mathrm{~T}$. What is the magnitude of the acceleration of the electron at this point?

Solution

$$
\begin{gathered}
\bar{a}=\frac{\bar{F}_{B}}{m_{e}}=\frac{e(\bar{v} \times \bar{B})}{m_{e}}=-1.6 \cdot 10^{-19} \frac{\left(6.0 \cdot 10^{6} \bar{\imath} \times(3 \bar{\imath}+1.5 \bar{\jmath}+2 \bar{k})\right)}{9.1 \cdot 10^{-31}}=\frac{-1.6 \cdot 10^{-19} 6.0 \cdot 10^{6}}{9.1 \cdot 10^{-31}}(1.5 \bar{k}-2 \bar{\jmath}) \\
=-1.05 \cdot 10^{18}(1.5 \bar{k}-2 \bar{\jmath}) \\
|\bar{a}|=1.05 \cdot 10^{18} \sqrt{1.5^{2}+(-2)^{2}}=2.65 \cdot 10^{18} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{gathered}
$$

