Answer on Question 59420, Physics, Mechanics, Relativity

Question:

How large an average force is required to stop a 1400 kg car in 5.0 s if the car's initial speed is $25 ms^{-1}$?

- a) 2000 N
- b) 3500 N
- c) 9000 N

d) 7000 N

Solution:

We can find an average force that required to stop the car from the definition of the impulse:

$$\Delta p = F_{avg} \Delta t,$$
$$m \Delta v = F_{avg} \Delta t,$$
$$m(v_{final} - v_{initial}) = F_{avg} \Delta t$$

here, *m* is the mass of the car, $v_{initial}$ is the initial speed of the car, v_{final} is the final speed of the car, F_{avg} is the average force that required to stop the car, Δt is the change in time.

Then, from the last formula we can calculate the average force:

$$F_{avg} = \frac{m(v_{final} - v_{initial})}{\Delta t} = \frac{1400 \ kg \cdot (0 \ ms^{-1} - 25 \ ms^{-1})}{5.0 \ s} = -7000 \ N.$$

The sign minus indicates that the average force directed opposite to the direction of the motion of the car. The magnitude of the average force is equal to 7000 N.

Answer:

d) 7000 N

https://www.AssignmentExpert.com