Answer on Question 59420, Physics, Mechanics, Relativity

Question:

How large an average force is required to stop a 1400 kg car in 5.0 s if the car's initial speed is $25 \mathrm{~ms}^{-1}$?
a) 2000 N
b) 3500 N
c) 9000 N
d) 7000 N

Solution:

We can find an average force that required to stop the car from the definition of the impulse:

$$
\begin{gathered}
\Delta p=F_{\text {avg }} \Delta t, \\
m \Delta v=F_{\text {avg }} \Delta t, \\
m\left(v_{\text {final }}-v_{\text {initial }}\right)=F_{\text {avg }} \Delta t
\end{gathered}
$$

here, m is the mass of the car, $v_{\text {initial }}$ is the initial speed of the car, $v_{\text {final }}$ is the final speed of the car, $F_{\text {avg }}$ is the average force that required to stop the car, Δt is the change in time.

Then, from the last formula we can calculate the average force:
$F_{\text {avg }}=\frac{m\left(v_{\text {final }}-v_{\text {initial }}\right)}{\Delta t}=\frac{1400 \mathrm{~kg} \cdot\left(0 \mathrm{~ms}^{-1}-25 \mathrm{~ms}^{-1}\right)}{5.0 \mathrm{~s}}=-7000 \mathrm{~N}$.
The sign minus indicates that the average force directed opposite to the direction of the motion of the car. The magnitude of the average force is equal to 7000 N .

Answer:

d) 7000 N

