

Answer on Question #59418, Physics / Mechanics | Relativity

The exhaust gas of a rocket is expelled at the rate of 1300 kg/s, at the velocity of 50 000 m/s.

Find the thrust on the rocket in newtons?

Find: $f - ?$

Given:

$$\frac{\Delta m}{\Delta t} = 1300 \text{ kg/s}$$

$$\Delta v = 50000 \text{ m/s}$$

Solution:

Newton's Second Law in scalar form:

$$f = ma \quad (1),$$

where a – acceleration

Acceleration:

$$a = \frac{\Delta v}{\Delta t} \quad (2)$$

$$(2) \text{ in } (1): f = \Delta v \times \frac{\Delta m}{\Delta t} \quad (3)$$

$$\text{Of (3)} \Rightarrow f = 65 \times 10^6 \text{ N}$$

Answer:

$$65 \times 10^6 \text{ N}$$

$$65 \times 10^3 \text{ kN}$$