Answer on Question \#59418, Physics / Mechanics | Relativity
The exhaust gas of a rocket is expelled at the rate of $1300 \mathrm{~kg} / \mathrm{s}$, at the velocity of $50000 \mathrm{~m} / \mathrm{s}$. Find the thrust on the rocket in newtons?

Find: f - ?

Given:

$\frac{\Delta \mathrm{m}}{\Delta \mathrm{t}}=1300 \mathrm{~kg} / \mathrm{s}$
$\Delta \mathrm{v}=50000 \mathrm{~m} / \mathrm{s}$

Solution:

Newton's Second Law in scalar form:
$\mathrm{f}=\mathrm{ma}(1)$,
where a - acceleration
Acceleration:
$\mathrm{a}=\frac{\Delta \mathrm{v}}{\Delta \mathrm{t}}$ (2)
(2) in (1): $\mathrm{f}=\Delta \mathrm{v} \times \frac{\Delta \mathrm{m}}{\Delta \mathrm{t}}$ (3)

Of (3) $\Rightarrow \mathrm{f}=65 \times 10^{6} \mathrm{~N}$

Answer:

$65 \times 10^{6} \mathrm{~N}$
$65 \times 10^{3} \mathrm{kN}$

