Answer on Question 59417, Physics, Mechanics, Relativity

Question:

A uniform plank AB 30 m long, weighing 100 N is pivoted at points P, Q which are 5 m from the ends A and B respectively. A boy of weight 250 N stands at point D on the plank, 1 m away from Q and the arrangement is in equilibrium. Determine the reaction R_{1} and R_{2} at the supports?
a) $R_{1}=77.5 \mathrm{~N}, R_{2}=245.5 \mathrm{~N}$.
b) $R_{1}=105.5 \mathrm{~N}, R_{2}=33.5 \mathrm{~N}$.
c) $R_{1}=37.5 \mathrm{~N}, R_{2}=312.5 \mathrm{~N}$.
d) $R_{1}=27.5 \mathrm{~N}, R_{2}=232.5 \mathrm{~N}$.

Solution:

a) To find the reaction force at the left support, R_{1}, we should consider the sum of moments of forces around the point Q . From the condition of the question we know that the arrangement is in equilibrium, thus the sum of all moments is equal to zero:

$$
\begin{gathered}
\sum M_{Q}=0 \\
R_{1} l_{P Q}-W_{\text {plank }} l_{C Q}+W_{\text {boy }} l_{Q D}=0 .
\end{gathered}
$$

From this equation, we can find R_{1} :
$R_{1}=\frac{W_{\text {plank }} l_{C Q}-W_{\text {boy }} l_{Q D}}{l_{P Q}}=\frac{100 \mathrm{~N} \cdot 10 \mathrm{~m}-250 \mathrm{~N} \cdot 1 \mathrm{~m}}{20 \mathrm{~m}}=\frac{750 \mathrm{~N} \cdot \mathrm{~m}}{20 \mathrm{~m}}=37.5 \mathrm{~N}$.
b) To find the reaction force at the right support, R_{2}, we should consider the sum of moments of forces around the point P. Again, since the arrangement is in equilibrium the sum of all moments is equal to zero:

$$
\begin{gathered}
\sum M_{P}=0 \\
W_{\text {plank }} l_{P C}+W_{\text {boy }} l_{P D}-R_{2} l_{P Q}=0
\end{gathered}
$$

From this equation, we can find R_{2} :

$$
\begin{aligned}
& R_{2}=\frac{W_{\text {plank }} l_{P C}+W_{\text {boy }} l_{P D}}{l_{P Q}}=\frac{100 \mathrm{~N} \cdot 10 \mathrm{~m}+250 \mathrm{~N} \cdot 21 \mathrm{~m}}{20 \mathrm{~m}}=\frac{6250 \mathrm{~N} \cdot \mathrm{~m}}{20 \mathrm{~m}}= \\
&=312.5 \mathrm{~N} .
\end{aligned}
$$

Answer:

c) $R_{1}=37.5 \mathrm{~N}, R_{2}=312.5 \mathrm{~N}$.

