Answer on Question \#59415-Physics-Mechanics-Relativity

A projectile shot at an angle of 60 degrees above the horizontal strikes a wall 25 m away at a point 16 m above the level of projection. What is the magnitude of the velocity with which the projectile hits the wall?
a) $25.44 \mathrm{~m} / \mathrm{s}$
b) $21.11 \mathrm{~m} / \mathrm{s}$
c) $11.62 \mathrm{~m} / \mathrm{s}$
d) $14.63 \mathrm{~m} / \mathrm{s}$

Solution

The equations of motion of projectile are:

$$
\begin{gathered}
x=v_{0} \cos \theta t \\
y=v_{0} \sin \theta t-\frac{g t^{2}}{2}
\end{gathered}
$$

The components of the velocity with which the projectile hits the wall are

$$
\begin{aligned}
& v_{x}=v_{0} \cos \theta \\
& v_{y}=v_{0} \sin \theta-g t . \\
& t=\frac{x}{v_{0} \cos \theta} . \\
& y=v_{0} \sin \theta\left(\frac{x}{v_{0} \cos \theta}\right)-\frac{g\left(\frac{x}{v_{0} \cos \theta}\right)^{2}}{2} \\
& y=x \tan \theta-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \theta} \\
& v_{0}=\frac{x}{\cos \theta} \sqrt{\frac{g}{2(x \tan \theta-y)}}=\frac{25}{\cos 60} \sqrt{\frac{9.8}{2(25 \tan 60-16)}}=21.1825 \frac{\mathrm{~m}}{\mathrm{~s}} . \\
& t=\frac{x}{v_{0} \cos \theta}=\frac{25}{21.1825 \cos 60}=2.36044 \mathrm{~s} . \\
& v_{x}=v_{0} \cos \theta=21.1825 \cos 60=10.59125 \frac{\mathrm{~m}}{\mathrm{~s}} \text {. } \\
& v_{y}=v_{0} \sin \theta-g t=21.1825 \sin 60-9.8 \cdot 2.36044=-4.78773 \frac{\mathrm{~m}}{\mathrm{~s}} .
\end{aligned}
$$

The magnitude of the velocity with which the projectile hits the wall is

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{(10.59125)^{2}+(-4.78773)^{2}}=11.62 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer: c) $\mathbf{1 1 . 6 2 ~ m / s . ~}$

