Answer on Question \#59414, Physics / Mechanics | Relativity |

A cart is moving horizontally along a straight with constant speed of $30 \mathrm{~m} / \mathrm{s}$. A projectile fired from the moving cart in such a way that it will return to the cart after the cart has moved 80 m . At what speed (relative to the cart) and at what angle (to the horizontal) must the projectile be fired?
a) $35.8 \mathrm{~m} / \mathrm{s}$ at 24 degrees
b) $38.6 \mathrm{~m} / \mathrm{s}$ at 54 degrees
c) $27.2 \mathrm{~m} / \mathrm{s}$ at 35 degrees
d) $24.3 \mathrm{~m} / \mathrm{s}$ at 44 degrees

Solution:

The equation of motion for the cart is

$$
x=v_{x} t
$$

The equations for the projectile are

$$
x=v_{x} t
$$

and

$$
y=v_{0 y} t-1 / 2 g t^{2}
$$

In our case:
$v_{x}=30 \mathrm{~m} / \mathrm{s}$,
$x=80 \mathrm{~m}$,
$y=0$,
$v_{0}=$?

$$
\begin{gathered}
t=\frac{x}{v_{x}}=\frac{80}{30}=\frac{8}{3} \mathrm{~s} \\
v_{0 y} t-1 / 2 g t^{2}=0 \\
v_{0 y}=0.5 \mathrm{gt}=0.5 \cdot 9.8 \cdot \frac{8}{3}=13.07 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

To move horizontally with cart projectile must be fired vertically.
Output: $v_{0}=13.07 \mathrm{~m} / \mathrm{s} ; \theta=90^{\circ}$.
All other answers do not satisfy the conditions of the problem.

