Answer on Question 59348, Physics, Other

Question:

One stone is dropped from a tower from rest (at time $t=0$) and simultaneously another stone is projected vertically upwards from the same tower with some initial velocity. The graph of the distance S between the two stones, before either hits the ground, varies with time as:

Solution:

Let's take the downwards as the positive direction, for convenience. Then, using the kinematic equation, we can find the distance S_{1}, that the first stone travels until it hits the ground (since the stone dropped from rest, its initial velocity is equal to zero):

$$
S_{1}=\frac{1}{2} g t^{2},
$$

here, g is the acceleration due to gravity (because it directed downward, it will be with sign plus), t is the time.

We can find the distance S_{2}, that the second stone travels until it hits the ground from the same kinematic equation (this time we have some initial velocity v_{0} and because it directed upward, it will be with sign minus):

$$
S_{2}=-v_{0} t+\frac{1}{2} g t^{2}
$$

here, v_{0} is the initial velocity of the second stone, t is the time, g is the acceleration due to gravity.

Then, we can find the distance between the two stones:

$$
S=S_{1}-S_{2}=\frac{1}{2} g t^{2}-\left(-v_{0} t+\frac{1}{2} g t^{2}\right)=\frac{1}{2} g t^{2}+v_{0} t-\frac{1}{2} g t^{2}=v_{0} t \propto t .
$$

Therefore, on the distance-time graph we will see the line with constant and positive slope (case (a)).

Answer: a)

