Answer on Question 59308, Physics, Mechanics, Relativity

Question:

A pipe contains a gradually tapering section where the diameter decreases from $400 \, mm$ to $250 \, mm$. The pipe contains an incompressible fluid of density $1000 \, kgm^{-3}$ and runs full. If the flow velocity is $2 \, ms^{-1}$ in the smaller diameter, determine:

- a) the velocity in the larger diameter
- b) the volume flow rate
- c) the mass flow rate

Solution:

Here's the sketch of our task:

a) We can find the velocity of the fluid from the Law of Continuity:

$$A_l v_l = A_s v_s,$$

here, $A_l = \pi r_l^2$, $A_s = \pi r_s^2$ are the large and small cross-sectional areas of the pipe, respectively; r_l , r_s are the large and small radii of the pipe, respectively; v_l is the velocity of the fluid in the larger diameter, v_s is the velocity of the fluid in the smaller diameter.

Then, from this formula we can calculate the velocity of the fluid in the larger diameter:

$$v_l = \frac{A_s v_s}{A_l} = v_s \cdot \frac{\pi r_s^2}{\pi r_l^2} = 2 \ m s^{-1} \cdot \frac{\pi \cdot (125 \cdot 10^{-3} \ m)^2}{\pi \cdot (200 \cdot 10^{-3} \ m)^2} = 0.78 \ m s^{-1}.$$

b) Let us determine the volume flow rate - the rate of flow through the volume V per unit time t:

$$V = vtA$$
,

$$\frac{\Delta V}{\Delta t} = A_l v_l = \frac{\pi D_l^2}{4} v_l = \frac{3.14}{4} (400 \cdot 10^{-3} \ m)^2 \cdot 0.78 \ \frac{m}{s} = 0.098 \ \frac{m^3}{s}.$$

c) As we know the volume flow rate, we can calculate the mass flow rate:

$$\frac{m}{\rho} = vts$$
,

$$\frac{\Delta m}{\Delta t} = \rho \frac{\Delta V}{\Delta t} = \rho v_l A_l = 1000 \frac{kg}{m^3} \cdot 0.098 \frac{m^3}{s} = 98 \frac{kg}{s}.$$

Answer:

- a) $v_l = 0.78 \, ms^{-1}$.
- b) $\frac{\Delta V}{\Delta t} = 0.098 \frac{m^3}{s}$.
- c) $\frac{\Delta m}{\Delta t} = 98 \frac{kg}{s}$.

https://www.AssignmentExpert.com