Answer on Question \#59306-Physics-Other

16 cm 3 of water flows per second through a capillary tube of radius a cm and of length lcm when connected to a pressure head of hcm of water. If a tube of same length and radius $\mathrm{a} / 2 \mathrm{~cm}$ is connected to the same pressure head. The quantity of water flowing through the tube per second will be? and how?

Solution

The volume per second through a capillary tube of radius is

$$
\begin{gathered}
Q=\frac{\pi p a^{4}}{8 \eta l}=16 \mathrm{~cm}^{3} \\
Q^{\prime}=\frac{\pi p\left(\frac{a}{2}\right)^{4}}{8 \eta l}=\frac{Q}{2^{4}}=\frac{16 \mathrm{~cm}^{3}}{16}=1 \mathrm{~cm}^{3} .
\end{gathered}
$$

Answer: $1 \mathrm{~cm}^{3}$.

