Answer on Question \#59289, Physics / Mechanics | Relativity |

If light travels at $3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$ and its frequency is $6 \cdot 10^{15} \mathrm{~Hz}$, then its wavelength is:
$10 \cdot 10^{7} \mathrm{~m}$
$5 \cdot 10^{-8} \mathrm{~m}$
$5 \cdot 10^{-7} \mathrm{~m}$
$10 \cdot 10^{-7} \mathrm{~m}$

Solution:

$$
\text { Speed }=\text { Wavelength } \cdot \text { Frequency }
$$

The above equation is known as the wave equation. It states the mathematical relationship between the speed (v) of a wave and its wavelength (λ) and frequency (f).

Using the symbols v, λ, and f, the equation can be rewritten as

$$
v=f \cdot \lambda
$$

Hence,

$$
\lambda=\frac{v}{f}=\frac{3 \cdot 10^{8}}{6 \cdot 10^{15}}=5 \cdot 10^{-8} \mathrm{~m}
$$

Output: $5 \cdot 10^{-8} \mathrm{~m}$

