Answer on Question 59286, Physics, Mechanics | Relativity

Question:

A rock is tossed upward with an initial velocity of 8 feet per second from the top of a one hundred and twenty foot cliff that overlooks the ocean. After how many seconds does the rock hit the water?

Solution:

We can find after how many seconds does the rock hit the water from the kinematic equation (also, we take the upwards as the positive direction):

$$
y(t)=y_{0}+v_{0} t+\frac{1}{2} a t^{2}
$$

here, $y(t)$ is the height of the rock when it hits the water, $y_{0}=120 \mathrm{ft}$ is the point of release, $v_{0}=8 \mathrm{ft} / \mathrm{s}$ is the initial velocity, t is the time we searching for, $a=g=$ $-32 \mathrm{ft} / \mathrm{s}^{2}$ is the acceleration due to gravity in the British system of units.

Because we want to know what the value of t will be when $y(t)=0$ (when rock hits the water), we must substitute 0 for $y(t)$ and solve the quadratic equation for t :

$$
\begin{gathered}
120+8 t-\frac{1}{2} \cdot 32 t^{2}=0 \\
2 t^{2}-t-15=0
\end{gathered}
$$

This quadratic equation has two roots:

$$
\begin{gathered}
t_{1}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}=\frac{1-\sqrt{1-4 \cdot 2 \cdot(-15)}}{2 \cdot 2}=\frac{1-\sqrt{121}}{4}=-2.5, \\
t_{2}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}=\frac{1+\sqrt{1-4 \cdot 2 \cdot(-15)}}{2 \cdot 2}=\frac{1+\sqrt{121}}{4}=3 .
\end{gathered}
$$

Because the time can't be negative the correct answer is $t=3 \mathrm{~s}$.

Answer:

$t=3 s$.

