## Answer on Question \#59258-Physics-Mechanics-Relativity

In an experiment to determine the period of oscillation of a loaded spiral spring, the equation of a simple harmonic oscillator $a=-\left(\frac{k}{m}\right) x$, where the symbols have their usual meaning, was used. Write down the equation for the angular frequency $\omega$ in terms of $k$ and $m$, the effective mass of the system

Answer

$$
a=\ddot{x}=-\left(\frac{k}{m}\right) x \rightarrow \ddot{x}+\left(\frac{k}{m}\right) x=0
$$

The equation of a simple harmonic oscillator is

$$
\ddot{x}+\omega^{2} x=0
$$

Thus, the equation for the angular frequency $\omega$ in terms of k and m is

$$
\omega=\sqrt{\frac{k}{m}}
$$

