

Answer on Question 59239, Physics, Mechanics, Relativity

Question:

The exhaust gas of a rocket is expelled at the rate of 1300 kg/s , at the velocity of 50000 m/s . Find the thrust on the rocket in newton.

a) $6.5 \cdot 10^7 \text{ N}$

b) $3.5 \cdot 10^7 \text{ N}$

c) $7.6 \cdot 10^7 \text{ N}$

d) $5.7 \cdot 10^7 \text{ N}$

Solution:

We can find the thrust on the rocket from the definition of the impulse:

$$F_t \Delta t = m \Delta v,$$

here, F_t is the force of the thrust on the rocket, Δt is the amount of time in which the force is acting, m is the mass of the expelled gas, Δv is the rate of change of exhaust gas velocity.

Let's look at our equation. We can see, that in 1 s , $1.3 \cdot 10^3 \text{ kg}$ of the exhaust gas leaves the rocket at the velocity of $5 \cdot 10^4 \text{ m/s}$:

$$F_t \cdot 1 \text{ s} = 1.3 \cdot 10^3 \text{ kg} \cdot 5 \cdot 10^4 \frac{\text{m}}{\text{s}}.$$

Then, we can calculate the force of the thrust on the rocket:

$$F_t = \frac{1.3 \cdot 10^3 \text{ kg} \cdot 5 \cdot 10^4 \frac{\text{m}}{\text{s}}}{1 \text{ s}} = 6.5 \cdot 10^7 \text{ N}.$$

Answer:

a) $6.5 \cdot 10^7 \text{ N}$