Answer on Question 59239, Physics, Mechanics, Relativity

Question:

The exhaust gas of a rocket is expelled at the rate of $1300 \mathrm{~kg} / \mathrm{s}$, at the velocity of $50000 \mathrm{~m} / \mathrm{s}$. Find the thrust on the rocket in newton.
a) $6.5 \cdot 10^{7} \mathrm{~N}$
b) $3.5 \cdot 10^{7} \mathrm{~N}$
c) $7.6 \cdot 10^{7} \mathrm{~N}$
d) $5.7 \cdot 10^{7} \mathrm{~N}$

Solution:

We can find the thrust on the rocket from the definition of the impulse:

$$
F_{t} \Delta t=m \Delta v,
$$

here, F_{t} is the force of the thrust on the rocket, Δt is the amount of time in which the force is acting, m is the mass of the expelled gas, Δv is the rate of change of exhaust gas velocity.

Let's look at our equation. We can see, that in $1 \mathrm{~s}, 1.3 \cdot 10^{3} \mathrm{~kg}$ of the exhaust gas leaves the rocket at the velocity of $5 \cdot 10^{4} \mathrm{~m} / \mathrm{s}$:

$$
F_{t} \cdot 1 \mathrm{~s}=1.3 \cdot 10^{3} \mathrm{~kg} \cdot 5 \cdot 10^{4} \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Then, we can calculate the force of the thrust on the rocket:

$$
F_{t}=\frac{1.3 \cdot 10^{3} \mathrm{~kg} \cdot 5 \cdot 10^{4} \frac{\mathrm{~m}}{\mathrm{~s}}}{1 \mathrm{~s}}=6.5 \cdot 10^{7} \mathrm{~N} .
$$

Answer:

a) $6.5 \cdot 10^{7} \mathrm{~N}$

