Answer on Question 59239, Physics, Mechanics, Relativity

Question:

The exhaust gas of a rocket is expelled at the rate of 1300 kg/s, at the velocity of 50000 m/s. Find the thrust on the rocket in newton.

- a) $6.5 \cdot 10^7 N$
- b) $3.5 \cdot 10^7 N$
- c) $7.6 \cdot 10^7 N$
- d) $5.7 \cdot 10^7 N$

Solution:

We can find the thrust on the rocket from the definition of the impulse:

$$F_t \Delta t = m \Delta v$$

here, F_t is the force of the thrust on the rocket, Δt is the amount of time in which the force is acting, m is the mass of the expelled gas, Δv is the rate of change of exhaust gas velocity.

Let's look at our equation. We can see, that in 1 s, $1.3 \cdot 10^3 kg$ of the exhaust gas leaves the rocket at the velocity of $5 \cdot 10^4 m/s$:

$$F_t \cdot 1 \ s = 1.3 \cdot 10^3 \ kg \cdot 5 \cdot 10^4 \ \frac{m}{s}$$
.

Then, we can calculate the force of the thrust on the rocket:

$$F_t = \frac{1.3 \cdot 10^3 \ kg \cdot 5 \cdot 10^4 \ \frac{m}{s}}{1 \ s} = 6.5 \cdot 10^7 \ N.$$

Answer:

a) $6.5 \cdot 10^7 N$