Answer on Question \#59211, Physics / Mechanics | Relativity |

Car A of mass 1000 kg moving at $20 \mathrm{~m} / \mathrm{s}$ collides with a car B of mass 1200 kg moving at $10 \mathrm{~m} / \mathrm{s}$ in same direction. If the car B is shunted towards at $15 \mathrm{~m} / \mathrm{s}$ by the impact, what is the velocity, v, of the car A immediately after the crash?

Solution:

Given:

$$
\begin{aligned}
& m_{1}=1000 \mathrm{~kg} \\
& m_{2}=1200 \mathrm{~kg} \\
& v_{1 i}=20 \mathrm{~m} / \mathrm{s} \\
& v_{2 i}=10 \mathrm{~m} / \mathrm{s} \\
& v_{2 f}=15 \mathrm{~m} / \mathrm{s} \\
& v_{1 f}=?
\end{aligned}
$$

The equation that denotes the conservation of momentum is:

Momentum bef ore collision $=$ Momentum after collision

$$
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}
$$

where, $\mathrm{m}_{1}=$ mass of $\operatorname{car} \mathrm{A}$
$\mathrm{m}_{2}=$ mass of car B
$v_{1 i}=$ initial velocity of car A
$v_{2 i}=$ initial velocity of car B
$v_{2 f}=$ final velocity of car B

From above equation we have,

$$
\begin{gathered}
v_{1 f}=\frac{m_{1} v_{1 i}+m_{2} v_{2 i}-m_{2} v_{2 f}}{m_{1}} \\
v_{2 f}=\frac{1000 \cdot 20+1200 \cdot 10-1200 \cdot 15}{1000}=14 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Answer: 14 m/s.

