Answer on Question #59194, Physics / Optics

If the focal length of a convex lens is 1 m, what is the maximum thickness of the lens?

Find:: d_{max}-?

Given:

f=1 m

Solution:

For not thin lenses fair value:

$$\frac{n_{\text{environment}}}{f} = (n_{\text{lens}} - n_{\text{environment}}) \times \left(\frac{1}{R_1} - \frac{1}{R_2} + \frac{(n_{\text{lens}} - n_{\text{environment}})d}{n_{\text{lens}}R_1R_2}\right) (1),$$

where n_{lens} – absolute index of lens' refractive,

nenvironment - absolute index environment' refractive,

f – focal length,

R₁, R₂ - radii of curvature of the lenses surfaces

By task: R₁>0, R₂>0 (2)

Believe that lens is symmetric: R₁=R₂=R (3)

(2) and (3) in (1):
$$\frac{n_{environment}}{f} = (n_{lens} - n_{environment}) \times \left(\frac{(n_{lens} - n_{environment})d}{n_{lens}R^2}\right) (4)$$

Of (4) $\Rightarrow d = \frac{n_{lens}R^2n_{environment}}{f(n_{lens} - n_{environment})^2} (5)$

We believe that a lens is glass and placed in the air.

n_{air} =1,0 (6)

Tabular data: nglass =1,5 - 1,9 (7)

Of (5) and (7) \Rightarrow d_{max} if n_{glass} minimum

Of (5) \Rightarrow if n_{glass} =1,5 than d_{max}

Of (5) $\Rightarrow d_{max} = \frac{6R^2}{f}$

Answer:

The general formula: $d = \frac{n_{lens}R^2 n_{environment}}{f(n_{lens}-n_{environment})^2}$ The simplified formula (n_{air} =1,0): $d = \frac{n_{lens}R^2}{f(n_{lens}-1)^2}$ Maximum thickness (n_{glass} =1,5): $d_{max} = \frac{6R^2}{f}$

Numeric value of maximum thickness for this task (f=1 m): {d_{max}}= 6R²

https://www.AssignmentExpert.com