Answer on Question 59113, Physics, Optics

Question:

An object of size 10 cm is kept at a distance of 10 cm from a convex lens. If the focal length of the lens is 5 cm , the size of the image is \qquad ?

Solution:

Let's first find the the distance from the convex lens to the image from the lens equation:

$$
\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f^{\prime}}
$$

here, d_{o} is the distance from the object to the convex lens, d_{i} is the distance from the convex lens to the image and f is the focal length.

So, we get:

$$
\begin{gathered}
\frac{1}{10 \mathrm{~cm}}+\frac{1}{d_{i}}=\frac{1}{5 \mathrm{~cm}} \\
\frac{1}{d_{i}}=\frac{1}{5 \mathrm{~cm}}-\frac{1}{10 \mathrm{~cm}}=\frac{1}{10} \mathrm{~cm}, \\
d_{i}=10 \mathrm{~cm} .
\end{gathered}
$$

As we can see, the distance from the lens to the image is positive, so the image is real.
Then, we can calculate the magnification of the lens from the formula:

$$
M=\frac{h_{i}}{h_{0}}=\frac{-d_{i}}{d_{o}},
$$

here, h_{i} is the size of the image, h_{0} is the size of the object, d_{o} is the distance from the object to the convex lens, d_{i} is the distance from the convex lens to the image.

Thus, we get:

$$
M=\frac{-d_{i}}{d_{o}}=\frac{-10 \mathrm{~cm}}{10 \mathrm{~cm}}=-1
$$

As we know, the magnification, we can find the size of the image:

$$
h_{i}=M \cdot h_{0}=(-1) \cdot 10 \mathrm{~cm}=-10 \mathrm{~cm} .
$$

The sign minus indicates that the image is inverted. As we can see the image is the same size as the object.

Let's draw the ray tracing diagram:

The object is located at a distance of two focal point ($2 F$) from the lens (here, 1 cell is equal to 1 centimeter). According to the theory, we obtain a real, inverted image, that is the same size as the object and located at a distance of two focal point on the other side of the convex lens.

Answer:

$h_{i}=-10 \mathrm{~cm}$.

