Answer on Question \#59072, Physics / Electromagnetism

An electron enters a uniform magnetic field 0.20 T at an angle of 30° the field. Determine the pitch of the helical path assuming its speed is $3 \times 10^{7} \mathrm{~m} / \mathrm{s}$
90.6 m
37.8 m
56.1 m
46.5 m

Solution:

The radius of helical path is

$$
\begin{gathered}
r=\frac{m v_{\perp}}{q B} \\
r=\frac{m v \sin \theta}{q B}=\frac{9.11 \cdot 10^{-31} \cdot 3 \cdot 10^{7} \cdot \sin 30^{\circ}}{1.6 \cdot 10^{-19} \cdot 0.2}=4.27 \cdot 10^{-4} \mathrm{~m}
\end{gathered}
$$

Time period of helical path

$$
T=\frac{2 \pi r}{v_{\perp}}
$$

$$
T=\frac{2 \pi r}{v \sin \theta}=\frac{2 \cdot 3.14 \cdot 4.27 \cdot 10^{-4}}{3 \cdot 10^{7} \cdot \sin 30^{\circ}}=1.788 \cdot 10^{-10} \mathrm{~s}
$$

Pitch of the helix

$$
\begin{gathered}
p=v_{\| \mid} T=v \cdot \cos \theta \cdot T \\
p=3 \cdot 10^{7} \cdot \cos 30^{\circ} \cdot 1.788 \cdot 10^{-10}=0.00465 \mathrm{~m}=4.65 \mathrm{~mm}
\end{gathered}
$$

Output: 4.65 mm

