Answer on Question \#59066, Physics / Electromagnetism

A straight wire 1.0 m long carries a current of 100 A at right-angles to a uniform magnetic field of 1.0T. Find the mechanical force on the wire and the power required to move it at $15 \mathrm{~m} / \mathrm{s}$ in a plane at right-angles to the field.

100 N and 1.5 kW
200 N and 2.5 kW
300 N and 1.4 kW
200N and 2.7 kW

Solution:

The force on the current-carrying conductor in a magnetic field depends upon:
(a) the flux density of the field, B teslas
(b) the strength of the current, I amperes,
(c) the length of the conductor perpendicular to the magnetic field, I metres, and
(d) the directions of the field and the current.

When the magnetic field, the current and the conductor are mutually at right angles then the force is:

$$
F=B I l
$$

In our case:
$B=1.0 \mathrm{~T}$,
$I=100 \mathrm{~A}$,
$l=1.0 \mathrm{~m}$
Thus,

$$
F=1 \cdot 100 \cdot 1=100 \mathrm{~N}
$$

The power equals force times speed:

$$
P=F v=100 \cdot 15=1500 \mathrm{~W}=1.5 \mathrm{~kW}
$$

Answer: 100 N and 1.5 kW

