

Answer on Question#59063 — Physics / Electric Circuits

A capacitor of $2.0\mu\text{F}$ is connected to a battery of 2.0V through a resistance of $10\text{k}\Omega$. What is the initial current in the circuit and the current after 0.02s ?

$0.5\mu\text{A}$ and 0.074mA

7.4A and 5.0mA

$0.2\mu\text{A}$ and 0.074mA

$6.2\mu\text{A}$ and 7.04mA

Solution:

Voltage on the capacitor is described by the next formula:

$$U_C = E * (1 - e^{-\frac{t}{rc}})$$

Where E is the battery voltage, t is time, c is capacity, r is resistance.

Current across the capacitor equals:

$$i = c \frac{dU_C}{dt}$$

So,

$$i = \frac{c * E * e^{-\frac{t}{rc}}}{rc} = \frac{E * e^{-\frac{t}{rc}}}{r}$$

So the initial current in the circuit is 0.2mA and the current after 0.02s is 0.074mA .

Answer:

0.2mA and 0.074mA