Answer on question \#59062, Physics / Electric Circuits

Question A series circuit consisting of an uncharged 42 F capacitor and $10 \mathrm{M} \Omega$ resistor is connected to 100 V power source. What are the current in the circuit and the charge on the capacitor after one time constant?

Solution Current changes as

$$
I=I_{0} e^{-\frac{t}{R C}}
$$

In our case $t=\tau=R C$. Hence, current is

$$
I=I_{0} / e=U /(R e)=\frac{100}{10^{7} \cdot e} \approx 0.368 \cdot 10^{-5} \mathrm{~A}
$$

The charge will be
$Q=Q_{0}\left(1-e^{-\frac{t}{R C}}\right)=Q_{0}(1-1 / e)=U C(1-0.368)=100 \cdot 42 \cdot 0.632=2654.5 C$
So answer is $3.7 \mu \mathrm{~A}$ and 2.7 kC .

