Answer on Question 59058, Physics, Electric Circuits

Question:

A 2Ω and a 3Ω resistors in parallel are connected in series to a 4Ω resistor. The combination is then connected across a 12 V battery having internal resistance of 1Ω. What is the equivalent resistance of the circuit?

Solution:

Here's the sketch of our task:

We have a parallel combination of $R_{1}=2 \Omega$ and $R_{2}=3 \Omega$ resistors that are connected in series to a $R_{3}=4 \Omega$ resistor. The combination is then connected across a 12 V battery having internal resistance of $r=1 \Omega$. Our task is to find the equivalent resistance of the circuit.

Let's first find the equivalent resistance of combination of resistors $R_{1}=2 \Omega$ and $R_{2}=$ 3Ω that connected in parallel:

$$
R_{12(\|)}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{2 \Omega \cdot 3 \Omega}{2 \Omega+3 \Omega}=1.2 \Omega .
$$

Then, from our sketch we can see that $R_{12(| |)}, R_{3}$ and r are connected in series. Therefore, the equivalent resistance of the circuit will be:

$$
R_{e q}=R_{12(\|)}+R_{3}+r=1.2 \Omega+4 \Omega+1 \Omega=6.2 \Omega .
$$

Answer: $\quad R_{e q}=6.2 \Omega$.

