
Answer on Question 59058, Physics, Electric Circuits

Question:

A 2 Ω and a 3 Ω resistors in parallel are connected in series to a 4 Ω resistor. The combination is then connected across a 12 *V* battery having internal resistance of 1 Ω . What is the equivalent resistance of the circuit?

Solution:

Here's the sketch of our task:

We have a parallel combination of $R_1 = 2 \Omega$ and $R_2 = 3 \Omega$ resistors that are connected in series to a $R_3 = 4 \Omega$ resistor. The combination is then connected across a 12 V battery having internal resistance of $r = 1 \Omega$. Our task is to find the equivalent resistance of the circuit.

Let's first find the equivalent resistance of combination of resistors $R_1 = 2 \Omega$ and $R_2 = 3 \Omega$ that connected in parallel:

$$R_{12(||)} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} = \frac{R_1 R_2}{R_1 + R_2} = \frac{2 \ \Omega \cdot 3 \ \Omega}{2 \ \Omega + 3 \ \Omega} = 1.2 \ \Omega.$$

Then, from our sketch we can see that $R_{12(||)}$, R_3 and r are connected in series. Therefore, the equivalent resistance of the circuit will be:

$$R_{eq} = R_{12(||)} + R_3 + r = 1.2 \ \Omega + 4 \ \Omega + 1 \ \Omega = 6.2 \ \Omega.$$

Answer: $R_{eq} = 6.2 \Omega$.

https://www.AssignmentExpert.com