## Answer on Question 59051, Physics, Electric Circuits

## Question:

The current $I$ in a conductor as a function of time $t$ is given as $I(t)=5 t^{2}-3 t+10$, where current is in ampres $(A)$ and $t$ is in seconds ( $s$ ). What quantity of charge moves across a section through the conductor during the interval $t=2 s$ to $t=5 s$ ?
a) 154.4 C
b) 193.5 C
c) 225.5 C
d) 300.0 C

## Solution:

Let's recall the definition of the current. The electric current is the rate at which the electric charge flows through the cross-sectional area of a conductor:

$$
I=\frac{\Delta Q}{\Delta t^{\prime}}
$$

here, $\Delta Q$ is the amount of charge that passes through the cross-sectional area of the conductor in a time interval $\Delta t$. Let's write the definition of the electric current in the differential form:

$$
I=\frac{d Q}{d t} .
$$

From this formula, we can find the quantity of charge moves across a section through the conductor during the interval from $t=2 s$ to $t=5 \mathrm{~s}: d Q=I d t$,

$$
\begin{aligned}
Q=\int_{2}^{5} I d t & =\int_{2}^{5}\left(5 t^{2}-3 t+10\right) d t= \\
& =\left.\left(\frac{5}{3} t^{3}-\frac{3}{2} t^{2}+10 t\right)\right|_{2} ^{5}=\frac{5}{3}(5)^{3}-\frac{3}{2}(5)^{2}+10 \cdot 5-\frac{5}{3}(2)^{3}+\frac{3}{2}(2)^{2} \\
& -10 \cdot 2=193.5 C .
\end{aligned}
$$

Answer: b) 193.5 C

