Answer on Question \#59039, Physics / Electromagnetism

Calculate the potential difference between the plates of a parallel plate capacitor so that the gravitational force on a proton would be balanced by the electric field (proton mass $=1.67 \times 10^{-27} \mathrm{~kg}$, electronic charge $\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$, plate separation is 0.5 cm . Take $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
$1.4 \times 10^{-6} \mathrm{~V}$
$2.0 \times 10^{-6} \mathrm{~V}$
$1.7 \times 10^{-6} \mathrm{~V}$
$3.2 \times 10^{-6} \mathrm{~V}$

Solution:

Balance of forces:

$$
m g=\frac{e U}{d}
$$

Therefore,

$$
U=\frac{m g d}{e}=\frac{1.67 \cdot 10^{-27} \cdot 9.8 \cdot 0.5 \cdot 10^{-2}}{1.6 \cdot 10^{-19}}=5.11 \cdot 10^{-10} \mathrm{Volts}
$$

Answer: $5.11 \cdot 10^{-10}$ Volts

