Answer on Question #59039, Physics / Electromagnetism |

Calculate the potential difference between the plates of a parallel plate capacitor so that the gravitational force on a proton would be balanced by the electric field (proton mass = 1.67×10^{-27} kg, electronic charge e= 1.6×10^{-19} C, plate separation is 0.5cm. Take g=9.8m/s²)

1.4×10⁻⁶V 2.0×10⁻⁶V 1.7×10⁻⁶V 3.2×10⁻⁶V

Solution:

Balance of forces:

$$mg = \frac{eU}{d}$$

Therefore,

$$U = \frac{mgd}{e} = \frac{1.67 \cdot 10^{-27} \cdot 9.8 \cdot 0.5 \cdot 10^{-2}}{1.6 \cdot 10^{-19}} = 5.11 \cdot 10^{-10} \text{ Volts}$$

Answer: $5.11 \cdot 10^{-10}$ *Volts*

https://www.AssignmentExpert.com