Answer on Question 58907, Physics, Other

Question:

A student measures the time period of 100 oscillations of a simple pendulum four times. The data set is $90 s, 91 s, 95 s$ and $92 s$. If the minimum division in the measuring clock is $1 s$, then the reported mean time should be?

Solution:

Let's first find the mean value of time:

$$
t_{\text {mean }}=\frac{t_{1}+t_{2}+t_{3}+t_{4}}{4}=\frac{90 s+91 s+95 s+92 s}{4}=\frac{368 s}{4}=92 \mathrm{~s} .
$$

Then, we can find the absolute error for each measurement:

$$
\begin{aligned}
& \Delta t_{1}=\left|t_{\text {mean }}-t_{1}\right|=|92 \mathrm{~s}-90 \mathrm{~s}|=2 \mathrm{~s}, \\
& \Delta t_{2}=\left|t_{\text {mean }}-t_{2}\right|=|92 \mathrm{~s}-91 \mathrm{~s}|=1 \mathrm{~s}, \\
& \Delta t_{3}=\left|t_{\text {mean }}-t_{3}\right|=|92 \mathrm{~s}-95 \mathrm{~s}|=3 \mathrm{~s}, \\
& \Delta t_{4}=\left|t_{\text {mean }}-t_{4}\right|=|92 \mathrm{~s}-92 \mathrm{~s}|=0 \mathrm{~s} .
\end{aligned}
$$

Let's calculate the mean absolute error:

$$
\Delta t_{\text {mean }}=\frac{\Delta t_{1}+\Delta t_{2}+\Delta t_{3}+\Delta t_{4}}{4}=\frac{2 s+1 s+3 s+0 s}{4}=\frac{6 s}{4}=1.5 s \approx 2 \mathrm{~s} .
$$

Therefore, the reported mean time should be $92 \pm 2 \mathrm{~s}$.

Answer:

The reported mean time should be $92 \pm 2 s$.

