Answer on Question \#58904-Physics-Mechanics-Relativity

A uniform string of length 20 m is suspended from a rigid support. A short wave pulse is introduced at its lowest end. It starts moving up the string. The time taken to reach the support is (take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s} 2$)

Solution

At any cords section at length x above lowest point,

$$
T=\frac{m g x}{l}=\mu g x
$$

Hence speed of wave,

$$
v=\sqrt{\frac{T}{\mu}}=\sqrt{g x}
$$

So,

$$
\begin{gathered}
\frac{d x}{d t}=\sqrt{g x} \rightarrow \int_{0}^{l} \frac{d x}{\sqrt{g x}}=\int_{0}^{t} d t \\
t=\frac{1}{\sqrt{g}}\left(\frac{x^{\frac{1}{2}}}{\frac{1}{2}}\right)_{0}^{l}=2 \sqrt{\frac{l}{g}}=2 \sqrt{\frac{20}{10}}=2 \sqrt{2} s .
\end{gathered}
$$

