


Answer on Question 58886, Physics, Electric Circuits

Question:

A 3 V battery with internal resistance 0.5Ω is connected across a parallel combination of 1Ω and 2Ω resistances. The current in the 2Ω resistance is ____?

Solution:

Here's the sketch of our task:

We have a battery with electromotive force of $\mathcal{E} = 3 \text{ V}$; the internal resistance of the battery is $r = 0.5 \Omega$. That battery is connected across a parallel combination of $R_1 = 1 \Omega$ and $R_2 = 2 \Omega$ resistances, as shown in the picture above. Our task is to find the current in the resistance R_2 .

Let's first find the equivalent resistance of combination of resistances $R_1 = 1 \Omega$ and $R_2 = 2 \Omega$ that connected in parallel (let's call it the equivalent load resistance):

$$R_{eq(load)} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} = \frac{R_1 R_2}{R_1 + R_2} = \frac{1 \Omega \cdot 2 \Omega}{1 \Omega + 2 \Omega} = 0.66(6) \Omega.$$

The combination of these two resistances is in series with the internal resistance of the battery, r . Let's find the equivalent resistance of the internal resistance of the battery, r , and the equivalent load resistance, $R_{eq(load)}$:

$$R_{eq} = r + R_{eq(load)}.$$

Then, from the Ohm's law we can find the current in the circuit:

$$I = \frac{\mathcal{E}}{R_{eq}} = \frac{\mathcal{E}}{r + R_{eq(load)}} = \frac{3 \text{ V}}{0.5 \Omega + 0.66(6) \Omega} = 2.57 \text{ A.}$$

So, the terminal voltage of the battery will be:

$$V = \mathcal{E} - Ir = 3 \text{ V} - 2.57 \text{ A} \cdot 0.5 \Omega = 1.715 \text{ V.}$$

Finally, from the Ohm's law we can find the current in the $R_2 = 2 \Omega$ resistance:

$$I_2 = \frac{V}{R_2} = \frac{1.715 \text{ V}}{2 \Omega} = 0.86 \text{ A.}$$

Answer:

$$I_2 = 0.86 \text{ A.}$$