Answer on Question \#58754-Physics-Mechanics | Relativity

Bacteria move back and forth by using their flagella (structures that look like little tails). A bacteria moves with $v_{1}=-50 \frac{\mu m}{s}$ have been observed to $-X$ direction for $t_{1}=2.3$ second, and it move forth to the $+x$ direction for $v_{2}=30 \frac{\mu m}{s}$ within $t_{2}=1$ seconds.
a) What is its total displacement?
b) What is the total distance?
c) Find his average velocity for his whole movement?
d) Determine his average speed for his whole movement?

Solution

$$
\begin{gathered}
x_{1}=v_{1} t_{1}=-50 \frac{\mu m}{s} \cdot 2.3 s=-115 \mu m \\
x_{2}=v_{2} t_{2}=30 \frac{\mu m}{s} \cdot 1 s=30 \mu m
\end{gathered}
$$

a) The total displacement is

$$
s=\left|x_{1}+x_{2}\right|=|-115+30|=85 \mu m
$$

b) The total distance is

$$
d=\left|x_{1}\right|+\left|x_{2}\right|=|-115|+|30|=145 \mu m
$$

c) The average velocity for his whole movement is

$$
v=\frac{s}{t_{1}+t_{2}}=\frac{85}{2.3+1}=25.76 \frac{\mu m}{s}
$$

d) The average speed for his whole movement is

$$
u=\frac{d}{t_{1}+t_{2}}=\frac{145}{2.3+1}=43.94 \frac{\mu m}{s}
$$

