Answer on Question \#58749, Physics / Mechanics | Relativity

A powerful motorcycle can accelerate from rest to $26.8 \mathrm{~m} / \mathrm{s}(100 \mathrm{~km} / \mathrm{h})$ in only 3.90 s .
(a) What is its average acceleration?
(b) How far does it travel in that time?

Solution:

(a) Average acceleration is the rate at which velocity changes. Average acceleration is the change in velocity divided by an elapsed time.

$$
\begin{gathered}
\bar{a}=\frac{\text { Change in velocity }}{\text { Time interval }} \\
\bar{a}=\frac{26.8 \mathrm{~m} / \mathrm{s}}{3.90 \mathrm{~s}}=6.87 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

(b) The distance is

$$
d=v_{0} t+\frac{a t^{2}}{2}
$$

where $\mathrm{v}_{0}=0$ is the initial velocity.
Hence,

$$
d=\frac{a t^{2}}{2}=\frac{6.87 \cdot 3.90^{2}}{2}=52.25 \mathrm{~m}
$$

Answer. (a) $6.87 \mathrm{~m} / \mathrm{s}^{2}$; (b) 52.25 m .

