Answer on Question \#58741, Physics / Optics |

How many lines must a grating have, used in the second order and near 550 nanometer, to resolve two lines 0.1 angstrom apart?

Solution:

For two nearly equal wavelengths λ_{1} and λ_{2} between which a diffraction grating can just barely distinguish, the resolving power R of the grating is defined as

$$
R=\frac{\lambda}{\lambda_{2}-\lambda_{1}}=\frac{\lambda}{\Delta \lambda}
$$

If N lines of the grating are illuminated, it can be shown that the resolving power in the mthorder diffraction is

$$
R=m N
$$

Thus, resolving power increases with increasing order number and with increasing number of illuminated slits.

In our case,

$$
\frac{\lambda}{\Delta \lambda}=m N
$$

$\lambda=550 \cdot 10^{-9} \mathrm{~m}, m=2, \Delta \lambda=0.1 \cdot 10^{-10} \mathrm{~m}$.

$$
N=\frac{\lambda}{m \Delta \lambda}=\frac{550 \cdot 10^{-9}}{2 \cdot 0.1 \cdot 10^{-10}}=27500
$$

Answer: 27500.

