Answer on Question \# 58712 - Physics - Molecular Physics | Thermodynamics

An ideal gas is in equilibrium at initial state with temperature $T_{0}=137^{\circ} \mathrm{C}$, pressure $\mathrm{P}_{0}=0.75$ Pa and volume $V_{0}=0.75 \mathrm{~m}^{3}$. If there is a change in state in which the gas undergoes an isothermal process to a final state of equilibrium during which the volume is doubled. Calculate the temperature and pressure of the gas at this final state.

Solution:

In an isothermal process, the temperature of the gas is constant. The temperature of the gas at the final state T_{f} is equal to the initial temperature:

$$
\mathrm{T}_{\mathrm{f}}=\mathrm{T}_{0}=137\left[{ }^{\mathrm{o}} \mathrm{C}\right] .
$$

The relation between thermodynamic parameters in an isothermal process is described by Boyle-Mariotte law:

$$
\begin{aligned}
& \mathrm{pV}=\text { const } ; \\
& \mathrm{p}_{0} \mathrm{~V}_{0}=\mathrm{p}_{\mathrm{f}} \mathrm{~V}_{\mathrm{f}} .
\end{aligned}
$$

The pressure of the gas in the final state

$$
p_{f}=\frac{p_{0} V_{0}}{V_{f}}=\frac{p_{0} V_{0}}{2 V_{0}}=\frac{p_{0}}{2}=\frac{0.75}{2}=0.375[\mathrm{~Pa}] .
$$

Answer: $\mathrm{T}_{\mathrm{f}}=137\left[{ }^{\circ} \mathrm{C}\right] ; \mathrm{p}_{\mathrm{f}}=0.375[\mathrm{~Pa}]$.

