

Answer on Question 58710, Physics, Electric Circuits

Question:

The temperature at which the tungsten filament of a 12 V and 36 W lamp operates is $1730\text{ }^{\circ}\text{C}$. If the temperature coefficient of resistance of tungsten is $6 \cdot 10^{-3}\text{ }1/\text{K}$, find the resistance of the lamp at a room temperature of $20\text{ }^{\circ}\text{C}$:

- a) $10.00\text{ }\Omega$
- b) $0.45\text{ }\Omega$
- c) $0.39\text{ }\Omega$
- d) $4.0\text{ }\Omega$

Solution:

Let's first find the resistance of tungsten filament at temperature $1730\text{ }^{\circ}\text{C}$. From the definition of the electrical power we have:

$$P = \frac{V^2}{R}.$$

From this formula we can find the resistance of tungsten filament at temperature $1730\text{ }^{\circ}\text{C}$:

$$R = \frac{V^2}{P} = \frac{(12\text{ V})^2}{36\text{ W}} = 4\text{ }\Omega.$$

First, we can find the resistance of the lamp at a temperature of $0\text{ }^{\circ}\text{C}$ from the formula:

$$R_{1730\text{ }^{\circ}\text{C}} = R_{0\text{ }^{\circ}\text{C}}[1 + \alpha(T - T_{0\text{ }^{\circ}\text{C}})],$$

here, $R_{1730\text{ }^{\circ}\text{C}}$ is the resistance of tungsten filament at temperature $1730\text{ }^{\circ}\text{C}$ (or 2003.15 K), $R_{0\text{ }^{\circ}\text{C}}$ is the resistance of tungsten filament at reference temperature $0\text{ }^{\circ}\text{C}$ (or 273.15 K), $\alpha = 6 \cdot 10^{-3}\text{ }1/\text{K}$ is the temperature coefficient of resistance of tungsten at temperature $0\text{ }^{\circ}\text{C}$, T the temperature of the tungsten filament (in our case 2003.15 K), $T_{0\text{ }^{\circ}\text{C}}$ is the reference temperature that α is specified at for the tungsten (in our case 273.15 K).

From this formula we can find $R_{0\text{ }^{\circ}\text{C}}$:

$$R_{0^\circ\text{C}} = \frac{R}{[1 + \alpha(T - T_{0^\circ\text{C}})]} = \frac{4 \Omega}{\left[1 + 6 \cdot 10^{-3} \frac{1}{K} \cdot (2003.15 \text{ K} - 273.15 \text{ K})\right]} = 0.35 \Omega.$$

Then, we can find the resistance of the lamp at a temperature of 20 °C just using the same formula:

$$\begin{aligned} R_{20^\circ\text{C}} &= R_{0^\circ\text{C}}[1 + \alpha(T - T_{0^\circ\text{C}})] = \\ &= 0.35 \Omega \cdot \left[1 + 6 \cdot 10^{-3} \frac{1}{K} \cdot (293.15 \text{ K} - 273.15 \text{ K})\right] = 0.39 \Omega. \end{aligned}$$

Answer:

c) $R_{20^\circ\text{C}} = 0.39 \Omega.$