

Question #58653, Physics / Quantum Mechanics | completed

A particular x-ray photon has wavelength of 41.5pm. Calculate photon (a) energy, (b) frequency, (c) momentum.

Solution:

$$\lambda = 41.5 \text{ pm} = 41.5 \cdot 10^{-12} \text{ m}$$

a) Relationship between wavelength of photons and its energy: $E = h\nu = h \cdot \frac{c}{\lambda}$,

where $c = 3 \cdot 10^8 \frac{\text{m}}{\text{s}}$ – is the speed of light and

$$h = 6.626070040(81) \times 10^{-34} \text{ J} \cdot \text{s} = 4.135667662(25) \times 10^{-15} \text{ eV} \cdot \text{s} – \text{Planck's constant}$$

$$E = h \cdot \frac{c}{\lambda} = 4.136 \cdot 10^{-15} [\text{eV} \cdot \text{s}] \cdot \frac{3 \cdot 10^8 [\text{m/s}]}{41.5 \cdot 10^{-12} [\text{m}]} = 29899 \text{ [eV]}$$

or in SI units:

$$E = h \cdot \frac{c}{\lambda} = 6.626 \cdot 10^{-34} [\text{J} \cdot \text{s}] \cdot \frac{3 \cdot 10^8 [\text{m/s}]}{41.5 \cdot 10^{-12} [\text{m}]} = 4.79 \cdot 10^{-15} [\text{J}]$$

b) It is known the frequency of photon f can find from

$$f = \frac{c}{\lambda} = \frac{3 \cdot 10^8 [\text{m/s}]}{41.5 \cdot 10^{-12} [\text{m}]} = 7.23 \cdot 10^{18} \text{ [Hz]}$$

or can find from a):

$$E = h \cdot \frac{c}{\lambda} = h \cdot f ==> f = \frac{E}{h} = \frac{4.79 \cdot 10^{-15} [\text{J}]}{6.626 \cdot 10^{-34} [\text{J} \cdot \text{s}]} = \frac{29899 [\text{eV}]}{4.136 \cdot 10^{-15} [\text{eV} \cdot \text{s}]} = 7.23 \cdot [\text{Hz}]$$

c) We can calculate the momentum of the photon using the famous De Broglie wavelength formula:

$$\lambda = \frac{h}{p} ==> p = \frac{h}{\lambda} = \frac{6.626 \cdot 10^{-34} [\text{J} \cdot \text{s}]}{41.5 \cdot 10^{-12} [\text{m}]} = 1.597 \cdot 10^{-23} [\text{kg} \cdot \text{m/s}]$$

Answer:

a) $E = h \frac{c}{\lambda} = 29899 \text{ eV} = 4.79 \cdot 10^{-15} \text{ J}$

b) $f = \frac{c}{\lambda} = 7.23 \cdot 10^{18} \text{ Hz}$

c) $p = \frac{h}{\lambda} = 1.597 \cdot 10^{-23} \text{ kg} \cdot \text{m/s}$