Answer on Question \#58618, Physics / Optics

Ordinary white passes through a diffraction grating having 10,000 slits per centimeter, i.e. a slit separation of $d=1.00 \times 10^{-6} \mathrm{~m}$, and casts a diffraction pattern on a screen. You measure the angular separation between the central white fringe and the blue stripe in the first ($m=1$) rainbow as 23.6 degrees. From this information, calculate the wavelength of blue light.

Solution:

The condition for maximum (bright spot) is

$$
d \sin \theta=m \lambda
$$

where $\mathrm{m}=1$ is order of interference, $\mathrm{d}=1 \times 10^{-6} \mathrm{~m}$.
Thus,

$$
\lambda=\frac{d \sin \theta}{m}=\frac{1 \cdot 10^{-6} \cdot \sin 23.6^{\circ}}{1}=4 \cdot 10^{-7} \mathrm{~m}=400 \cdot 10^{-9} \mathrm{~m}=400 \mathrm{~nm}
$$

Answer: $400 \cdot 10^{-9} \mathrm{~m}=400 \mathrm{~nm}$

