Answer on Question #58497, Physics / Mechanics | Relativity

A nail weighs 0.2254 N in air and 0.1245 N when fully submerged in oil of density 800 kg/m^3.

What is the density of the nail?

Find: $\rho_{nail} - ?$ **Given:** $F_{air}=0,2254 \text{ N}$ $F_{nail}=0,1254 \text{ N}$ $\rho_{oil}=800 \text{ kg/m}^3$ **Solution:**

Consider the forces which acting on a nail.

 $\overrightarrow{F_{A}}$ $\overrightarrow{F_{air}}$ $\overrightarrow{F_{oil}}$

Of the figure $\Rightarrow F_{oil} = F_{air} - F_A (1)$, where F_A – Archimedes force. Archimedes force: $F_A = \rho_{oil} V_{nail} g (2)$ Weight of nail in the air: $F_{nail} = \rho_{nail} V_{nail} g (3)$ Of (3) $\Rightarrow V_{nail} = \frac{F_{nail}}{g\rho_{nail}} (4)$ (4) in (2): $F_A = \frac{\rho_{oil}}{\rho_{nail}} F_{nail} (5)$ (5) in (1): $F_{oil} = F_{air} - \frac{\rho_{oil}}{\rho_{nail}} F_{nail} (6)$ Of (6) $\Rightarrow \frac{\rho_{oil}}{\rho_{nail}} F_{nail} = F_{air} - F_{oil} (7)$ Of (7) $\Rightarrow \rho_{nail} = \frac{F_{nail}}{F_{air} - F_{oil}} \rho_{oil} (8)$ Of (8) $\Rightarrow \rho_{nail} = 1787, 12 \text{ kg/m}^3$.