Answer on Question 58480, Physics, Other

Question:

An anti-aircraft shell is fired vertically upward with a muzzle velocity of $488 \mathrm{~ms}^{-1}$. What is the maximum height it can reach? What time it takes to reach the maximum height? What is the instantaneous velocity at the end of $40 s, 60 s$?

Solution:

a) Let's take the upwards as the positive direction. Then, we can find the maximum height from the kinematic equation:

$$
v_{f}^{2}=v_{i}^{2}+2 a h,
$$

here, $v_{f}=0 \mathrm{~ms}^{-1}$ is the final velocity of the shell at the maximum height, v_{i} is the initial velocity of the shell, $a=g=-9.8 \mathrm{~ms}^{-2}$ is the acceleration due to gravity, h is the height.

Then, we get:

$$
\begin{gathered}
0=\left(488 \mathrm{~ms}^{-1}\right)^{2}+2 \cdot\left(-9.8 \mathrm{~ms}^{-2}\right) \cdot h, \\
19.6 \mathrm{~ms}^{-2} \cdot h=238144 \mathrm{~m}^{2} \mathrm{~s}^{-2}, \\
h=\frac{238144 \mathrm{~m}^{2} \mathrm{~s}^{-2}}{19.6 \mathrm{~ms}^{-2}}=12.15 \cdot 10^{3} \mathrm{~m}=12.15 \mathrm{~km} .
\end{gathered}
$$

b) We can find the time that shell takes to reach the maximum height from the kinematic equation:

$$
v_{f}=v_{i}+a t
$$

here, $v_{f}=0 \mathrm{~ms}^{-1}$ is the final velocity of the shell at the maximum height, v_{i} is the initial velocity of the shell, $a=g=-9.8 \mathrm{~ms}^{-2}$ is the acceleration due to gravity, t is the time.

Then, we get:

$$
\begin{gathered}
0=488 \mathrm{~ms}^{-1}+\left(-9.8 \mathrm{~ms}^{-2}\right) \cdot t, \\
9.8 \mathrm{~ms}^{-2} \cdot t=488 \mathrm{~ms}^{-1},
\end{gathered}
$$

$$
t=\frac{488 \mathrm{~ms}^{-1}}{9.8 \mathrm{~ms}^{-2}}=49.8 \mathrm{~s}
$$

c) We can find the instantaneous velocity at the end of $40 s$ from the kinematic equation:

$$
v_{f}=v_{i}+a t=488 \mathrm{~ms}^{-1}+\left(-9.8 \mathrm{~ms}^{-2}\right) \cdot 40 \mathrm{~s}=96 \mathrm{~ms}^{-1} .
$$

d) Similarly, we can find the instantaneous velocity at the end of 60 s :

$$
v_{f}=v_{i}+a t=488 \mathrm{~ms}^{-1}+\left(-9.8 \mathrm{~ms}^{-2}\right) \cdot 60 \mathrm{~s}=-100 \mathrm{~ms}^{-1} .
$$

The sign minus indicates that the velocity of the shell is directed downward (the shell is begin to fall).

Answer:
a) $h=12.15 \mathrm{~km}$
b) $t=49.8 \mathrm{~s}$
c) $v_{f}=96 \mathrm{~ms}^{-1}$
d) $v_{f}=-100 \mathrm{~ms}^{-1}$

