Answer on Question 58480, Physics, Other

Question:

An anti-aircraft shell is fired vertically upward with a muzzle velocity of $488 m s^{-1}$. What is the maximum height it can reach? What time it takes to reach the maximum height? What is the instantaneous velocity at the end of 40 s, 60 s?

Solution:

a) Let's take the upwards as the positive direction. Then, we can find the maximum height from the kinematic equation:

$$v_f^2 = v_i^2 + 2ah,$$

here, $v_f = 0 m s^{-1}$ is the final velocity of the shell at the maximum height, v_i is the initial velocity of the shell, $a = g = -9.8 m s^{-2}$ is the acceleration due to gravity, *h* is the height.

Then, we get:

$$0 = (488 \ ms^{-1})^2 + 2 \cdot (-9.8 \ ms^{-2}) \cdot h,$$

$$19.6 \ ms^{-2} \cdot h = 238144 \ m^2 s^{-2},$$

$$h = \frac{238144 \ m^2 s^{-2}}{19.6 \ ms^{-2}} = 12.15 \cdot 10^3 \ m = 12.15 \ km.$$

b) We can find the time that shell takes to reach the maximum height from the kinematic equation:

$$v_f = v_i + at$$
,

here, $v_f = 0 ms^{-1}$ is the final velocity of the shell at the maximum height, v_i is the initial velocity of the shell, $a = g = -9.8 ms^{-2}$ is the acceleration due to gravity, t is the time.

Then, we get:

$$0 = 488 \, ms^{-1} + (-9.8 \, ms^{-2}) \cdot t,$$

9.8 ms⁻² \cdot t = 488 ms⁻¹.

$$t = \frac{488 \, ms^{-1}}{9.8 \, ms^{-2}} = 49.8 \, s.$$

c) We can find the instantaneous velocity at the end of 40 s from the kinematic equation:

$$v_f = v_i + at = 488 \ ms^{-1} + (-9.8 \ ms^{-2}) \cdot 40 \ s = 96 \ ms^{-1}.$$

d) Similarly, we can find the instantaneous velocity at the end of 60 s:

$$v_f = v_i + at = 488 \, ms^{-1} + (-9.8 \, ms^{-2}) \cdot 60 \, s = -100 \, ms^{-1}.$$

The sign minus indicates that the velocity of the shell is directed downward (the shell is begin to fall).

Answer:

- a) $h = 12.15 \ km$
- b) *t* = 49.8 *s*
- c) $v_f = 96 \ ms^{-1}$

d)
$$v_f = -100 \ ms^{-1}$$