Answer on Question 58479, Physics, Mechanics, Relativity

Question:

Determine the quantity of heat required to convert 1 kg of ice at -20°C to water at 100°C? Specific heat capacities of water and ice are $4186 \ J/kg \cdot K$ and $2302 \ J/kg \cdot K$ respectively. The latent heat of fusion of ice is $L_f = 3.33 \cdot 10^5 \ J/kg$.

Solution:

Let's calculate the amount of heat required to convert a 1 kg of ice at -20° C to a water at 100°C:

$$Q = Q_1 + Q_2 + Q_3,$$

where Q_1 is the amount of heat required to raise the temperature of ice from -20° C to 0° C, Q_2 is the latent heat required to change the state from ice at 0° C to water at 0° C and Q_3 is the amount of heat required to raise the temperature of water from 0° C to 100° C.

$$\begin{split} Q_1 &= m_{ice} c_{ice} \Delta t = 1 \ kg \cdot 2302 \ \frac{J}{kg^{\circ} \text{C}} \cdot \left(0^{\circ} \text{C} - (-20^{\circ} \text{C})\right) = 46040 \ J, \\ Q_2 &= m_{ice} L_f = 1 \ kg \cdot 3.33 \cdot 10^5 \ \frac{J}{kg} = 333000 \ J, \\ Q_3 &= m_{water} c_{water} \Delta t = 1 \ kg \cdot 4186 \ \frac{J}{kg^{\circ} \text{C}} \cdot \left(100^{\circ} \text{C} - 0^{\circ} \text{C}\right) = 418600 \ J, \\ Q &= Q_1 + Q_2 + Q_3 = 46040 \ J + 333000 \ J + 418600 \ J = 797640 \ J. \end{split}$$

Answer:

$$Q = 797640 J.$$