

Answer on Question 58479, Physics, Mechanics, Relativity

Question:

Determine the quantity of heat required to convert 1 kg of ice at -20°C to water at 100°C ? Specific heat capacities of water and ice are $4186\text{ J/kg}\cdot\text{K}$ and $2302\text{ J/kg}\cdot\text{K}$ respectively. The latent heat of fusion of ice is $L_f = 3.33 \cdot 10^5\text{ J/kg}$.

Solution:

Let's calculate the amount of heat required to convert a 1 kg of ice at -20°C to a water at 100°C :

$$Q = Q_1 + Q_2 + Q_3,$$

where Q_1 is the amount of heat required to raise the temperature of ice from -20°C to 0°C , Q_2 is the latent heat required to change the state from ice at 0°C to water at 0°C and Q_3 is the amount of heat required to raise the temperature of water from 0°C to 100°C .

$$Q_1 = m_{ice}c_{ice}\Delta t = 1\text{ kg} \cdot 2302 \frac{\text{J}}{\text{kg}\text{°C}} \cdot (0^\circ\text{C} - (-20^\circ\text{C})) = 46040\text{ J},$$

$$Q_2 = m_{ice}L_f = 1\text{ kg} \cdot 3.33 \cdot 10^5 \frac{\text{J}}{\text{kg}} = 333000\text{ J},$$

$$Q_3 = m_{water}c_{water}\Delta t = 1\text{ kg} \cdot 4186 \frac{\text{J}}{\text{kg}\text{°C}} \cdot (100^\circ\text{C} - 0^\circ\text{C}) = 418600\text{ J},$$

$$Q = Q_1 + Q_2 + Q_3 = 46040\text{ J} + 333000\text{ J} + 418600\text{ J} = 797640\text{ J}.$$

Answer:

$$Q = 797640\text{ J}.$$