Answer on Question #58438, Physics / Mechanics | Relativity

a body of mass 100gm is suspended from the end of a light eleastic spring and set up into oscillatory motion.the equation of its displacement is x=2cos[2pie+pie/4]. find the phase constant and the period of oscillatory motion.what is the force acting on the body?

Find: $\varphi - ? T - ? f - ?$ Given: m=100×10⁻³ kg $x = 2 \cos \left(2\pi t + \frac{\pi}{4}\right)$

Solution:

The equation of harmonic oscillations: $x = x_{max} \cos(\omega t + \varphi_0) (1),$ where $\phi = \omega t + \phi_0$ – phase constant With the condition of the problem: $x = 2\cos\left(2\pi t + \frac{\pi}{4}\right)$ (2) Of (1) and (2) $\Rightarrow \phi = 2\pi t + \frac{\pi}{4}$ The cyclic frequency: $\omega = \frac{2\pi}{T} (3),$ where T - period of oscillatory motion Of (3) \Rightarrow T = $\frac{2\pi}{\omega}$ (4) Of (1) and (2) $\Rightarrow \omega = 2\pi$ (5) (5) in (4): T=1 s The equation of force: $f = f_{max} \cos(\omega t + \varphi_0)$ (6), where f_{max} – peak value of force Newton's Second Law in scalar form: f = ma(7),where a - acceleration of body Of (7) \Rightarrow f_{max} = ma_{max} (8), Acceleration of body: $a = x_t''$ (9),

where
$$x_t^{''}$$
 - the second derivative of the coordinates of time
Of (1) and (9) \Rightarrow
 $a = (-\omega x_{max} \sin(\omega t + \varphi_0))' = -\omega^2 x_{max} \cos(\omega t + \varphi_0) = -a_{max} \cos(\omega t + \varphi_0)$ (10)
Of (10) $\Rightarrow a_{max} = \omega^2 x_{max}$ (11)
Of (2) $\Rightarrow x_{max} = 2 m$ (12)
(5) and (12) in (11): $a_{max} = 8\pi^2 m/_{S^2}$ (13)
(13) in (8): $f_{max} = 0.8\pi^2 N$ (14)
(14) in (6): $f = 0.8\pi^2 \cos(2\pi t + \frac{\pi}{4})$
Answer:
 $\omega = 2\pi t + \frac{\pi}{4}$

 $\varphi = 2\pi t + \frac{\pi}{4}$ T=1 s $f_{max} = 0.8\pi^2 N$ $f = 0.8\pi^2 \cos\left(2\pi t + \frac{\pi}{4}\right)$