Answer on Question \#58438, Physics / Mechanics | Relativity
a body of mass 100 gm is suspended from the end of a light eleastic spring and set up into oscillatory motion.the equation of its displacement is $x=2 \cos [2$ pie+pie/4]. find the phase constant and the period of oscillatory motion.what is the force acting on the body?

Find: φ - ? T-? f - ?
Given:
$\mathrm{m}=100 \times 10^{-3} \mathrm{~kg}$
$x=2 \cos \left(2 \pi t+\frac{\pi}{4}\right)$

Solution:

The equation of harmonic oscillations:
$\mathrm{x}=\mathrm{x}_{\text {max }} \cos \left(\omega \mathrm{t}+\varphi_{0}\right)(1)$,
where $\varphi=\omega \mathrm{t}+\varphi_{0}$ - phase constant
With the condition of the problem:
$x=2 \cos \left(2 \pi t+\frac{\pi}{4}\right)(2$
Of (1) and (2) $\Rightarrow \varphi=2 \pi t+\frac{\pi}{4}$
The cyclic frequency:
$\omega=\frac{2 \pi}{\mathrm{~T}}(3)$,
where T - period of oscillatory motion
Of (3) $\Rightarrow \mathrm{T}=\frac{2 \pi}{\omega}(4)$
Of (1) and (2) $\Rightarrow \omega=2 \pi(5)$
(5) in (4): $\mathrm{T}=1 \mathrm{~s}$

The equation of force:
$\mathrm{f}=\mathrm{f}_{\text {max }} \cos \left(\omega \mathrm{t}+\varphi_{0}\right)(6)$,
where $f_{\text {max }}$ - peak value of force
Newton's Second Law in scalar form:
$\mathrm{f}=\mathrm{ma}(7)$,
where a - acceleration of body
Of (7) $\Rightarrow \mathrm{f}_{\text {max }}=\operatorname{ma}_{\max }(8)$,
Acceleration of body:
$a=x_{t}^{\prime \prime}$ (9),
where $x_{t}^{\prime \prime}$ - the second derivative of the coordinates of time
Of (1) and (9) \Rightarrow
$\mathrm{a}=\left(-\omega \mathrm{x}_{\text {max }} \sin \left(\omega \mathrm{t}+\varphi_{0}\right)\right)^{\prime}=-\omega^{2} \mathrm{x}_{\text {max }} \cos \left(\omega \mathrm{t}+\varphi_{0}\right)=-\mathrm{a}_{\text {max }} \cos \left(\omega \mathrm{t}+\varphi_{0}\right)(10)$
Of (10) $\Rightarrow \mathrm{a}_{\text {max }}=\omega^{2} \mathrm{X}_{\text {max }}$ (11)
Of (2) $\Rightarrow \mathrm{x}_{\mathrm{max}}=2 \mathrm{~m}(12)$
(5) and (12) in (11): $\mathrm{a}_{\text {max }}=8 \pi^{2} \mathrm{~m} / \mathrm{s}^{2}$ (13)
(13) in (8): $f_{\text {max }}=0,8 \pi^{2} N(14)$
(14) in (6): $f=0,8 \pi^{2} \cos \left(2 \pi t+\frac{\pi}{4}\right)$

Answer:

$\varphi=2 \pi t+\frac{\pi}{4}$
$\mathrm{T}=1 \mathrm{~s}$
$f_{\text {max }}=0,8 \pi^{2} N$
$f=0,8 \pi^{2} \cos \left(2 \pi t+\frac{\pi}{4}\right)$

