Answer on Question \#58417, Physics / Mechanics | Relativity |

The rate of change of speed of the belt is given by $0.06(10-\mathrm{t}) \mathrm{m} / \mathrm{s}^{2}$, where t is in seconds. The speed of the belt is $0.8 \mathrm{~m} / \mathrm{s}$ at $\mathrm{t}=0$. When the normal acceleration of a point in contact with the pulley is $40 \mathrm{~m} / \mathrm{s}^{2}$, determine (a) the speed of the belt; (b) the time required to reach that speed; and (c) the distance traveled by the belt. Radius is 0.2 m .

Solution:

(a) For point the normal acceleration is

$$
a_{n}=\frac{v^{2}}{R}
$$

Hence,

$$
v=\sqrt{a_{n} R}=\sqrt{40 \cdot 0.2}=\sqrt{8}=2.83 \frac{\mathrm{~m}}{\mathrm{~s}} \text { or }-2.83 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

(b)

$$
\begin{gathered}
v=v_{0}+\dot{v} t \\
v=v_{0}+0.06(10-t) t=v_{0}+0.6 t-0.06 t^{2}
\end{gathered}
$$

In our case

$$
v_{0}=0.8 \mathrm{~m} / \mathrm{s}
$$

The equation for time is

$$
\begin{gathered}
0.06 t^{2}-0.6 t-2.83-0.8=0 \\
0.06 t^{2}-0.6 t-3.63=0
\end{gathered}
$$

Solution gives us

$$
t=14.25 \mathrm{~s}
$$

(c)

The distance is integral of velocity

$$
\begin{gathered}
d=\int_{0}^{t}\left(v_{0}+0.6 t-0.06 t^{2}\right) d t \\
d=\int_{0}^{14.25}\left(0.8+0.6 t-0.06 t^{2}\right) d t=0.8 t+\frac{0.6 t^{2}}{2}-\left.\frac{0.06 t^{3}}{3}\right|_{0} ^{14.25} \\
d=0.8 \cdot 14.25+0.6 \cdot \frac{14.25^{2}}{2}-0.06 \cdot \frac{14.25^{3}}{3}=14.45 \mathrm{~m}
\end{gathered}
$$

