Answer on Question \#58414-Physics - Mechanics

A particle is performing linear SHM at a point A on its path its potential energy is three times its kinetic energy. At another point B on its path its kinetic energy is three times its potential energy. Find the ratio of its potential energy at A to its potential energy at B.

Solution.

Let T is a kinetic energy and U is a potential energy. According to energy conservation law the whole of energy W is constant and consists of kinetic and potential ones $(W=U+T)$. So on the one hand:
$U_{A}=3 T_{A}-$ at point A
$T_{B}=3 U_{B}$ - at point B
And on another hand:

$$
\begin{gathered}
W=U_{A}+T_{A} \\
W=U_{B}+T_{B} \\
U_{A}+T_{A}=U_{B}+T_{B}
\end{gathered}
$$

Let`s use first equations

$$
\begin{aligned}
U_{A}+\frac{1}{3} U_{A} & =U_{B}+3 U_{B} \\
\frac{4}{3} U_{A} & =4 U_{B} \\
\frac{U_{A}}{U_{B}} & =3
\end{aligned}
$$

Answer: 3.

