Answer on Question \#58378, Physics / Mechanics | Relativity |

A particle of mass 100 g performs linear SHM along a path of length 20 cm with a frequency of 60 hz . Find the value of momentum when it is at a distance of 2 cm from positive extremity?

Solution:

Let:
v is the velocity at displacement x from the mid-point,
$f=60 \mathrm{~Hz}$ is the frequency,
k is the spring constant,
$\mathrm{m}=100 \mathrm{~g}$ is the mass,
$A=10 \mathrm{~cm}$ is the amplitude.

An object experiencing simple harmonic motion is traveling in one dimension, and its onedimensional motion is given by an equation of the form

$$
x=A \cos \omega t
$$

The velocity is given by

$$
v=\omega A \cos \omega t
$$

From first equation

$$
\cos \omega t=\frac{x}{A}=\frac{2 \mathrm{~cm}}{10 \mathrm{~cm}}=0.2
$$

Thus,

$$
v=\omega A \cos \omega t=2 \pi f A \cos \omega t=2 \cdot \pi \cdot 60 \cdot 0.1 \cdot 0.2=7.54 \mathrm{~m} / \mathrm{s}
$$

The momentum is

$$
p=m v=(0.1 \mathrm{~kg}) \cdot(7.54 \mathrm{~m} / \mathrm{s})=0.754 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

Answer: $0.754 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$

